ﻻ يوجد ملخص باللغة العربية
The no-pumping theorem states that seemingly natural driving cycles of stochastic machines fail to generate directed motion. Initially derived for single particle systems, the no-pumping theorem was recently extended to many-particle systems with zero-range interactions. Interestingly, it is known that the theorem is violated by systems with exclusion interactions. These two paradigmatic interactions differ by two qualitative aspects: the range of interactions, and the dependence of branching fractions on the state of the system. In this work two different models are studied in order to identify the qualitative property of the interaction that leads to breakdown of no-pumping. A model with finite-range interaction is shown analytically to satisfy no-pumping. In contrast, a model in which the interaction affects the probabilities of reaching different sites, given that a particle is making a transition, is shown numerically to violate the no-pumping theorem. The results suggest that systems with interactions that lead to state-dependent branching fractions do not satisfy the no-pumping theorem.
Stochastic pumps are models of artificial molecular machines which are driven by periodic time variation of parameters, such as site and barrier energies. The no-pumping theorem states that no directed motion is generated by variation of only site or
The study of critical properties of systems with long-range interactions has attracted in the last decades a continuing interest and motivated the development of several analytical and numerical techniques, in particular in connection with spin model
We study two dimensional stripe forming systems with competing repulsive interactions decaying as $r^{-alpha}$. We derive an effective Hamiltonian with a short range part and a generalized dipolar interaction which depends on the exponent $alpha$. An
The present review is devoted to the problems of finite-size scaling due to the presence of long-range interaction decaying at large distance as $1/r^{d+sigma}$, where $d$ is the spatial dimension and the long-range parameter $sigma>0$. Classical and quantum systems are considered.
We study the statistical properties of Ising spin chains with finite (although arbitrary large) range of interaction between the elements. We examine mesoscopic subsystems (fragments of an Ising chain) with the lengths comparable with the interaction