ﻻ يوجد ملخص باللغة العربية
We present several results relating to the contraction of generic tensor networks and discuss their application to the simulation of quantum many-body systems using variational approaches based upon tensor network states. Given a closed tensor network $mathcal{T}$, we prove that if the environment of a single tensor from the network can be evaluated with computational cost $kappa$, then the environment of any other tensor from $mathcal{T}$ can be evaluated with identical cost $kappa$. Moreover, we describe how the set of all single tensor environments from $mathcal{T}$ can be simultaneously evaluated with fixed cost $3kappa$. The usefulness of these results, which are applicable to a variety of tensor network methods, is demonstrated for the optimization of a Multi-scale Entanglement Renormalization Ansatz (MERA) for the ground state of a 1D quantum system, where they are shown to substantially reduce the computation time.
We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. Firstly, we recall established techniques for how the partition function of a 2D classical man
Recently, a class of tensor networks called isometric tensor network states (isoTNS) was proposed which generalizes the canonical form of matrix product states to tensor networks in higher dimensions. While this ansatz allows for efficient numerical
The understanding of complex quantum many-body systems has been vastly boosted by tensor network (TN) methods. Among others, excitation spectrum and long-range interacting systems can be studied using TNs, where one however confronts the intricate su
Using exact diagonalization and tensor network techniques we compute the gap for the AKLT Hamiltonian in 1D and 2D spatial dimensions. Tensor Network methods are used to extract physical properties directly in the thermodynamic limit, and we support
We show that the formalism of tensor-network states, such as the matrix product states (MPS), can be used as a basis for variational quantum Monte Carlo simulations. Using a stochastic optimization method, we demonstrate the potential of this approac