ترغب بنشر مسار تعليمي؟ اضغط هنا

Algorithms for tensor network renormalization

125   0   0.0 ( 0 )
 نشر من قبل Glen Evenbly
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Glen Evenbly




اسأل ChatGPT حول البحث

We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. Firstly, we recall established techniques for how the partition function of a 2D classical many-body system or the Euclidean path integral of a 1D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2D classical statistical and 1D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.



قيم البحث

اقرأ أيضاً

We present several results relating to the contraction of generic tensor networks and discuss their application to the simulation of quantum many-body systems using variational approaches based upon tensor network states. Given a closed tensor networ k $mathcal{T}$, we prove that if the environment of a single tensor from the network can be evaluated with computational cost $kappa$, then the environment of any other tensor from $mathcal{T}$ can be evaluated with identical cost $kappa$. Moreover, we describe how the set of all single tensor environments from $mathcal{T}$ can be simultaneously evaluated with fixed cost $3kappa$. The usefulness of these results, which are applicable to a variety of tensor network methods, is demonstrated for the optimization of a Multi-scale Entanglement Renormalization Ansatz (MERA) for the ground state of a 1D quantum system, where they are shown to substantially reduce the computation time.
Techniques for approximately contracting tensor networks are limited in how efficiently they can make use of parallel computing resources. In this work we demonstrate and characterize a Monte Carlo approach to the tensor network renormalization group method which can be used straightforwardly on modern computing architectures. We demonstrate the efficiency of the technique and show that Monte Carlo tensor network renormalization provides an attractive path to improving the accuracy of a wide class of challenging computations while also providing useful estimates of uncertainty and a statistical guarantee of unbiased results.
We propose a second renormalization group method to handle the tensor-network states or models. This method reduces dramatically the truncation error of the tensor renormalization group. It allows physical quantities of classical tensor-network model s or tensor-network ground states of quantum systems to be accurately and efficiently determined.
The understanding of complex quantum many-body systems has been vastly boosted by tensor network (TN) methods. Among others, excitation spectrum and long-range interacting systems can be studied using TNs, where one however confronts the intricate su mmation over an extensive number of tensor diagrams. Here, we introduce a set of generating functions, which encode the diagrammatic summations as leading order series expansion coefficients. Combined with automatic differentiation, the generating function allows us to solve the problem of TN diagrammatic summation. We illustrate this scheme by computing variational excited states and dynamical structure factor of a quantum spin chain, and further investigating entanglement properties of excited states. Extensions to infinite size systems and higher dimension are outlined.
We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a co ntrolled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three dimensional system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا