ﻻ يوجد ملخص باللغة العربية
The understanding of complex quantum many-body systems has been vastly boosted by tensor network (TN) methods. Among others, excitation spectrum and long-range interacting systems can be studied using TNs, where one however confronts the intricate summation over an extensive number of tensor diagrams. Here, we introduce a set of generating functions, which encode the diagrammatic summations as leading order series expansion coefficients. Combined with automatic differentiation, the generating function allows us to solve the problem of TN diagrammatic summation. We illustrate this scheme by computing variational excited states and dynamical structure factor of a quantum spin chain, and further investigating entanglement properties of excited states. Extensions to infinite size systems and higher dimension are outlined.
We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. Firstly, we recall established techniques for how the partition function of a 2D classical man
Understanding dissipation in 2D quantum many-body systems is a remarkably difficult open challenge. Here we show how numerical simulations for this problem are possible by means of a tensor network algorithm that approximates steady-states of 2D quan
We present several results relating to the contraction of generic tensor networks and discuss their application to the simulation of quantum many-body systems using variational approaches based upon tensor network states. Given a closed tensor networ
Recently, a class of tensor networks called isometric tensor network states (isoTNS) was proposed which generalizes the canonical form of matrix product states to tensor networks in higher dimensions. While this ansatz allows for efficient numerical
It is well known that unitary symmetries can be `gauged, i.e. defined to act in a local way, which leads to a corresponding gauge field. Gauging, for example, the charge conservation symmetry leads to electromagnetic gauge fields. It is an open quest