ﻻ يوجد ملخص باللغة العربية
We investigate chemical-potential ($mu$) dependence of the static-quark free energies in both the real and imaginary $mu$ regions, using the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. Static-quark potentials are evaluated from Polyakov-loop correlators in the deconfinement phase and the imaginary $mu=imu_{rm I}$ region and extrapolated to the real $mu$ region with analytic continuation. As the analytic continuation, the potential calculated at imaginary $mu=imu_{rm I}$ is expanded into a Taylor-expansion series of $imu_{rm I}/T$ up to 4th order and the pure imaginary variable $imu_{rm I}/T$ is replaced by the real one $mu_{rm R}/T$. At real $mu$, the 4th-order term weakens $mu$ dependence of the potential sizably. Also, the color-Debye screening mass is extracted from the color-singlet potential at imaginary $mu$, and the mass is extrapolated to real $mu$ by analytic continuation. The screening mass thus obtained has stronger $mu$ dependence than the prediction of the leading-order thermal perturbation theory at both real and imaginary $mu$.
We evaluate quark number densities at imaginary chemical potential by lattice QCD with clover-improved two-flavor Wilson fermion. The quark number densities are extrapolated to the small real chemical potential region by assuming some function forms.
We study the phase structure of imaginary chemical potential. We calculate the Polyakov loop using clover-improved Wilson action and renormalization improved gauge action. We obtain a two-state signals indicating the first order phase transition fo
By employing QCD inequalities, we discuss appearance of the pion condensate for both real and imaginary isospin chemical potentials, taking also into account imaginary quark chemical potential. We show that the charged pion can condense for real isos
A quasiparticle model of the quark-gluon plasma is compared with lattice QCD data for purely imaginary chemical potential. Net quark number density, susceptibility as well as the deconfinement border line in the phase diagram of strongly interacting
A nonperturbative lattice study of QCD at finite chemical potential is complicated due to the complex fermion determinant and the sign problem. Here we apply the method of stochastic quantization and complex Langevin dynamics to this problem. We pres