ﻻ يوجد ملخص باللغة العربية
A quasiparticle model of the quark-gluon plasma is compared with lattice QCD data for purely imaginary chemical potential. Net quark number density, susceptibility as well as the deconfinement border line in the phase diagram of strongly interacting matter are investigated. In addition, the impact of baryo-chemical potential dependent quasiparticle masses is discussed. This accomplishes a direct test of the model for non-zero baryon density. The found results are compared with lattice QCD data for real chemical potential by means of analytic continuation and with a different (independent) set of lattice QCD data at zero chemical potential.
We investigate chemical-potential ($mu$) dependence of the static-quark free energies in both the real and imaginary $mu$ regions, using the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action.
We summarize the derivation of the finite temperature, finite chemical potential thermodynamic potential in the bag-model approximation to quantum chromodynamics (QCD) that includes a finite $s$-quark mass in the Feynman diagram contributions for bot
We give the alternative formulation of quasiparticle model of quark gluon plasma with medium dependent dispersion relation. The model is thermodynamically consistent provided the medium dependent contribution to the energy density is taken in to acco
Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), color quantum path-integral Monte-Carlo (PIMC) calculations of the thermodynamic properties of the QGP are performed. We extend our previous zero chemical potential simulat
By employing QCD inequalities, we discuss appearance of the pion condensate for both real and imaginary isospin chemical potentials, taking also into account imaginary quark chemical potential. We show that the charged pion can condense for real isos