ﻻ يوجد ملخص باللغة العربية
We study the phase structure of imaginary chemical potential. We calculate the Polyakov loop using clover-improved Wilson action and renormalization improved gauge action. We obtain a two-state signals indicating the first order phase transition for $beta = 1.9, mu_I = 0.2618, kappa=0.1388$ on $8^3times 4$ lattice volume We also present a result of the matrix reduction formula for the Wilson fermion.
The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of quarks is a long-standing issue. Still, it is not definitely known whether the transition is of first or second order in the continuum limit. Which of the t
The order of the thermal phase transition in the chiral limit of Quantum Chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order ha
We investigate chemical-potential ($mu$) dependence of the static-quark free energies in both the real and imaginary $mu$ regions, using the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action.
Wilson Fermions with untwisted and twisted mass are widely used in lattice simulations. Therefore one important question is whether the twist angle and the lattice spacing affect the phase diagram. We briefly report on the study of the phase diagram
Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the c