ﻻ يوجد ملخص باللغة العربية
We fix a monic polynomial $f(x) in mathbb F_q[x]$ over a finite field and consider the Artin-Schreier-Witt tower defined by $f(x)$; this is a tower of curves $cdots to C_m to C_{m-1} to cdots to C_0 =mathbb A^1$, with total Galois group $mathbb Z_p$. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain a result on the behavior of the slopes of the eigencurve associated to the Artin-Schreier-Witt tower, analogous to the result of Buzzard and Kilford.
We study the canonical model of the Artin-Schreier-Kummer-Witt flat family of curves over a ring of mixed characteristic. We first prove the relative version of a classical theorem by Petri, then use the model proposed by Bertin-Mezard to construct a
It is shown that the real class field towers are always finite. The proof is based on Castelnuovos theory of the algebraic surfaces and a functor from such surfaces to the Etesi C*-algebras.
This paper concerns towers of curves over a finite field with many rational points, following Garcia--Stichtenoth and Elkies. We present a new method to produce such towers. A key ingredient is the study of algebraic solutions to Fuchsian differentia
We study a tower of function fields of Artin-Schreier type over a finite field with $2^s$ elements. The study of the asymptotic behavior of this tower was left as an open problem by Beelen, Garcia and Stichtenoth in $2006$. We prove that this tower i
Let $C$ be a smooth projective curve defined over a number field $k$, $X/k(C)$ a smooth projective curve of positive genus, $J_X$ the Jacobian variety of $X$ and $(tau,B)$ the $k(C)/k$-trace of $J_X$. We estimate how the rank of $J_X(k(C))/tau B(k)$