We study a tower of function fields of Artin-Schreier type over a finite field with $2^s$ elements. The study of the asymptotic behavior of this tower was left as an open problem by Beelen, Garcia and Stichtenoth in $2006$. We prove that this tower is asymptotically good for $s$ even and asymptotically bad for $s$ odd.
We fix a monic polynomial $f(x) in mathbb F_q[x]$ over a finite field and consider the Artin-Schreier-Witt tower defined by $f(x)$; this is a tower of curves $cdots to C_m to C_{m-1} to cdots to C_0 =mathbb A^1$, with total Galois group $mathbb Z_p$.
We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain a result on the behavior of the slopes of the eigencurve associated to the Artin-Schreier-Witt tower, analogous to the result of Buzzard and Kilford.
This paper describes a class of Artin-Schreier curves, generalizing results of Van der Geer and Van der Vlugt to odd characteristic. The automorphism group of these curves contains a large extraspecial group as a subgroup. Precise knowledge of this s
ubgroup makes it possible to compute the zeta functions of the curves in the class over the field of definition of all automorphisms in the subgroup. As a consequence, we obtain new examples of maximal curves.
Let $X$ be a smooth projective quadric defined over a field of characteristic 2. We prove that in the Chow group of codimension 2 or 3 of $X$ the torsion subgroup has at most two elements. In codimension 2, we determine precisely when this torsion su
bgroup is nontrivial. In codimension 3, we show that there is no torsion if {$dim Xge 11$.} This extends the analogous results in characteristic different from 2, obtained by Karpenko in the nineteen-nineties.
Let $F$ be a field of characteristic 2 and let $X$ be a smooth projective quadric of dimension $ge 1$ over $F$. We study the unramified cohomology groups with 2-primary torsion coefficients of $X$ in degrees 2 and 3. We determine completely the kerne
l and the cokernel of the natural map from the cohomology of $F$ to the unramified cohomology of $X$. This extends the results in characteristic different from 2 obtained by Kahn, Rost and Sujatha in the nineteen-nineties.
Elkies proposed a procedure for constructing explicit towers of curves, and gave two towers of Shimura curves as relevant examples. In this paper, we present a new explicit tower of Shimura curves constructed by using this procedure.
M. Chara
,H. Navarro
,R. Toledano
.
(2016)
.
"A problem of Beelen, Garcia and Stichtenoth on an Artin-Schreier tower in characteristic two"
.
Mar\\'ia Chara
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا