ﻻ يوجد ملخص باللغة العربية
We study the canonical model of the Artin-Schreier-Kummer-Witt flat family of curves over a ring of mixed characteristic. We first prove the relative version of a classical theorem by Petri, then use the model proposed by Bertin-Mezard to construct an explicit generating set for the relative canonical ideal. As a byproduct, we obtain a combinatorial criterion for a set to generate the canonical ideal, applicable to any curve satisfying the assumptions of Petris theorem.
This paper describes a class of Artin-Schreier curves, generalizing results of Van der Geer and Van der Vlugt to odd characteristic. The automorphism group of these curves contains a large extraspecial group as a subgroup. Precise knowledge of this s
We fix a monic polynomial $f(x) in mathbb F_q[x]$ over a finite field and consider the Artin-Schreier-Witt tower defined by $f(x)$; this is a tower of curves $cdots to C_m to C_{m-1} to cdots to C_0 =mathbb A^1$, with total Galois group $mathbb Z_p$.
We consider a Fermat curve $F_n:x^n+y^n+z^n=1$ over an algebraically closed field $k$ of characteristic $pgeq0$ and study the action of the automorphism group $G=left(mathbb{Z}/nmathbb{Z}timesmathbb{Z}/nmathbb{Z}right)rtimes S_3$ on the canonical rin
Let $X$ be the blowup of a weighted projective plane at a general point. We study the problem of finite generation of the Cox ring of $X$. Generalizing examples of Srinivasan and Kurano-Nishida, we consider examples of $X$ that contain a negative cur
Let ${cal M}_{g,[n]}$, for $2g-2+n>0$, be the D-M moduli stack of smooth curves of genus $g$ labeled by $n$ unordered distinct points. The main result of the paper is that a finite, connected etale cover ${cal M}^l$ of ${cal M}_{g,[n]}$, defined over