ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating non-Markovian stochastic processes

154   0   0.0 ( 0 )
 نشر من قبل Marian Boguna
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple and general framework to simulate statistically correct realizations of a system of non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical an efficient algorithm alike the Gillespie algorithm for Markovian processes, with the difference that now the occurrence rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian generalized Gillespie stochastic simulation methodology to investigate the effects of non-exponential inter-event time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the global behavior of complex systems, with important implications for their understanding and prediction. We also assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared to other existing methods, we find that the generalized Gillespie algorithm is the most general as it can be implemented very easily in cases, like for delays coupled to the evolution of the system, where other algorithms do not work or need adapt



قيم البحث

اقرأ أيضاً

Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and burstiness in a wide range of processes including inter-event time distributions, duration of interactions in temporal networks and human mobility. H ere we propose a non-Markovian Majority-Vote model (NMMV) that introduces non-Markovian effects in the standard (Markovian) Majority-Vote model (SMV). The SMV model is one of the simplest two-state stochastic models for studying opinion dynamics, and displays a continuous order-disorder phase transition at a critical noise. In the NMMV model we assume that the probability that an agent changes state is not only dependent on the majority state of his neighbors but it also depends on his {em age}, i.e. how long the agent has been in his current state. The NMMV model has two regimes: the aging regime implies that the probability that an agent changes state is decreasing with his age, while in the anti-aging regime the probability that an agent changes state is increasing with his age. Interestingly, we find that the critical noise at which we observe the order-disorder phase transition is a non-monotonic function of the rate $beta$ of the aging (anti-aging) process. In particular the critical noise in the aging regime displays a maximum as a function of $beta$ while in the anti-aging regime displays a minimum. This implies that the aging/anti-aging dynamics can retard/anticipate the transition and that there is an optimal rate $beta$ for maximally perturbing the value of the critical noise. The analytical results obtained in the framework of the heterogeneous mean-field approach are validated by extensive numerical simulations on a large variety of network topologies.
Simulating complex processes can be intractable when memory effects are present, often necessitating approximations in the length or strength of the memory. However, quantum processes display distinct memory effects when probed differently, precludin g memory approximations that are both universal and operational. Here, we show that it is nevertheless sensible to characterize the memory strength across a duration of time with respect to a sequence of probing instruments. We propose a notion of process recovery, leading to accurate predictions for any multi-time observable, with errors bounded by the memory strength. We then apply our framework to an exactly solvable non-Markovian model, highlighting the decay of memory for certain instruments that justify its truncation. Our formalism provides an unambiguous description of memory strength,paving the way for practical compression and recovery techniques pivotal to near-term quantum technologies.
The success of reinforcement learning in typical settings is, in part, predicated on underlying Markovian assumptions on the reward signal by which an agent learns optimal policies. In recent years, the use of reward machines has relaxed this assumpt ion by enabling a structured representation of non-Markovian rewards. In particular, such representations can be used to augment the state space of the underlying decision process, thereby facilitating non-Markovian reinforcement learning. However, these reward machines cannot capture the semantics of stochastic reward signals. In this paper, we make progress on this front by introducing probabilistic reward machines (PRMs) as a representation of non-Markovian stochastic rewards. We present an algorithm to learn PRMs from the underlying decision process as well as to learn the PRM representation of a given decision-making policy.
We investigate bond percolation on the non-planar Hanoi network (HN-NP), which was studied in [Boettcher et al. Phys. Rev. E 80 (2009) 041115]. We calculate the fractal exponent of a subgraph of the HN-NP, which gives a lower bound for the fractal ex ponent of the original graph. This lower bound leads to the conclusion that the original system does not have a non-percolating phase, where only finite size clusters exist, for p>0, or equivalently, that the system exhibits either the critical phase, where infinitely many infinite clusters exist, or the percolating phase, where a unique giant component exists. Monte Carlo simulations support our conjecture.
As a potential window on transitions out of the ergodic, many-body-delocalized phase, we study the dephasing of weakly disordered, quasi-one-dimensional fermion systems due to a diffusive, non-Markovian noise bath. Such a bath is self-generated by th e fermions, via inelastic scattering mediated by short-ranged interactions. We calculate the dephasing of weak localization perturbatively through second order in the bath coupling. However, the expansion breaks down at long times, and is not stabilized by including a mean-field decay rate, signaling a failure of the self-consistent Born approximation. We also consider a many-channel quantum wire where short-ranged, spin-exchange interactions coexist with screened Coulomb interactions. We calculate the dephasing rate, treating the short-ranged interactions perturbatively and the Coulomb interaction exactly. The latter provides a physical infrared regularization that stabilizes perturbation theory at long times, giving the first controlled calculation of quasi-1D dephasing due to diffusive noise. At first order in the diffusive bath coupling, we find an enhancement of the dephasing rate, but at second order we find a rephasing contribution. Our results differ qualitatively from those obtained via self-consistent calculations and are relevant in two different contexts. First, in the search for precursors to many-body localization in the ergodic phase. Second, our results provide a mechanism for the enhancement of dephasing at low temperatures in spin SU(2)-symmetric quantum wires, beyond the Altshuler-Aronov-Khmelnitsky result. The enhancement is possible due to the amplification of the triplet-channel interaction strength, and provides an additional mechanism that could contribute to the experimentally observed low-temperature saturation of the dephasing time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا