ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of the non-percolating phase for percolation on the non-planar Hanoi network

137   0   0.0 ( 0 )
 نشر من قبل Takehisa Hasegawa
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate bond percolation on the non-planar Hanoi network (HN-NP), which was studied in [Boettcher et al. Phys. Rev. E 80 (2009) 041115]. We calculate the fractal exponent of a subgraph of the HN-NP, which gives a lower bound for the fractal exponent of the original graph. This lower bound leads to the conclusion that the original system does not have a non-percolating phase, where only finite size clusters exist, for p>0, or equivalently, that the system exhibits either the critical phase, where infinitely many infinite clusters exist, or the percolating phase, where a unique giant component exists. Monte Carlo simulations support our conjecture.



قيم البحث

اقرأ أيضاً

We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Ac- tivity Driven (NoPAD) model [Moinet et al. Phys. Rev. Lett., 114 (2015)], a temporal network model incorporating the empirically observed bursty nature of soci al interactions. We focus on the aging effects emerging from the Non-Poissonian dynamics of link activation, and on their effects on the topological properties of time-integrated networks, such as the degree distribution. Analytic expressions for the degree distribution of integrated networks as a function of time are derived, ex- ploring both limits of vanishing and strong aging. We also address the percolation process occurring on these temporal networks, by computing the threshold for the emergence of a giant connected component, highlighting the aging dependence. Our analytic predictions are checked by means of extensive numerical simulations of the NoPAD model.
We present a simple and general framework to simulate statistically correct realizations of a system of non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical an efficient algorithm alike the Gillespie algo rithm for Markovian processes, with the difference that now the occurrence rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian generalized Gillespie stochastic simulation methodology to investigate the effects of non-exponential inter-event time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the global behavior of complex systems, with important implications for their understanding and prediction. We also assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared to other existing methods, we find that the generalized Gillespie algorithm is the most general as it can be implemented very easily in cases, like for delays coupled to the evolution of the system, where other algorithms do not work or need adapt
142 - S. Boettcher 2011
The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent hard-core repulsive lattice-gas proble m is recast first as an Ising-like canonical partition function, which allows for a closed set of renormalization group equations. The flow of these equations is analyzed for the limit of infinite chemical potential, at which the vertex-cover problem is attained. The relevant fixed point and its neighborhood are analyzed, and non-trivial results are obtained both, for the coverage as well as for the ground state entropy density, which indicates the complex structure of the solution space. Using special hierarchy-dependent operators in the renormalization group and Monte-Carlo simulations, structural details of optimal configurations are revealed. These studies indicate that the optimal coverages (or packings) are not related by a simple symmetry. Using a clustering analysis of the solutions obtained in the Monte Carlo simulations, a complex solution space structure is revealed for each system size. Nevertheless, in the thermodynamic limit, the solution landscape is dominated by one huge set of very similar solutions.
Complex networks characterized by global transport processes rely on the presence of directed paths from input to output nodes and edges, which organize in characteristic linked components. The analysis of such network-spanning structures in the fram ework of percolation theory, and in particular the key role of edge interfaces bridging the communication between core and periphery, allow us to shed light on the structural properties of real and theoretical flow networks, and to define criteria and quantities to characterize their efficiency at the interplay between structure and functionality. In particular, it is possible to assess that an optimal flow network should look like a hairy ball, so to minimize bottleneck effects and the sensitivity to failures. Moreover, the thorough analysis of two real networks, the Internet customer-provider set of relationships at the autonomous system level and the nervous system of the worm Caenorhabditis elegans --that have been shaped by very different dynamics and in very different time-scales--, reveals that whereas biological evolution has selected a structure close to the optimal layout, market competition does not necessarily tend toward the most customer efficient architecture.
101 - Leonardo I. Reyes 2015
We present a numerical study of a reaction-diffusion model on a small-world network. We characterize the models average activity $F_T$ after $T$ time steps and the transition from a collective (global) extinct state to an active state in parameter sp ace. We provide an explicit relation between the parameters of our model at the frontier between these states. A collective active state can be associated to a global epidemic spread, or to a persistent neuronal activity. We found that $F_T$ does not depends on disorder in the network if the transmission rate $r$ or the average coordination number $K$ are large enough. The collective extinct-active transition can be induced by changing two parameters associated to the network: $K$ and the disorder parameter $p$ (which controls the variance of $K$). We can also induce the transition by changing $r$, which controls the threshold size in the dynamics. In order to operate at the transition the parameters of the model must satisfy the relation $rK=a_p$, where $a_p$ as a function of $p/(1-p)$ is a stretched exponential function. Our results are relevant for systems that operate {it at} the transition in order to increase its dynamic range and/or to operate under optimal information-processing conditions. We discuss how glassy behaviour appears within our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا