ترغب بنشر مسار تعليمي؟ اضغط هنا

The bow-shock and high-speed jet in the faint, 40 arcmin diameter, outer halo of the evolved Helix planetary nebula (NGC 7293)

195   0   0.0 ( 0 )
 نشر من قبل Panayotis Boumis
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In previous, very deep, optical images of NGC 7293 both a feature that has the morphology of a bow-shock and one with that of a jet were discovered in the faint 40 arcmin diameter halo of the nebula. Spatially resolved longslit profiles of the Halpha and [N II] 6548, 6584 A nebular emission lines from both features have now been obtained. The bow-shaped feature has been found to have Halpha radial velocities close to the systemic heliocentric radial velocity, -27 km/s, of NGC 7293 and is faint in the [N II] 6548, 6584 A emission lines. Furthermore, the full width of these profiles matches the relative motion of NGC 7293 with its ambient interstellar medium consequently it is deduced that the feature is a real bow-shock caused by the motion of NGC 7293 as it ploughs through this medium. The proper motion of the central star also points towards this halo feature which substantiates this interpretation of its origin. Similarly [N II] 6584 A line profiles reveal that the jet-like filament is indeed a collimated outflow, as suggested by its morphology, at around 300 km/s with turbulent widths of around 50 km/s. Its low Halpha/[N II] 6548, 6584 A brightness ratio suggests collisional ionization as expected in a high-speed jet.



قيم البحث

اقرأ أيضاً

Previous velocity images which reveal flows of ionized gas along the most prominent cometary tail (from Knot 38) in the Helix planetary nebula are compared with that taken at optical wavelengths with the Hubble Space Telescope and with an image in th e emission from molecular hydrogen. The flows from the second most prominent tail from Knot 14 are also considered. The kinematics of the tail from the more complex Knot 32, shown here for the first time, also reveals an acceleration away from the central star. All of the tails are explained as accelerating ionized flows of ablated material driven by the previous, mildly supersonic, AGB wind from the central star. The longest tail of ionized gas, even though formed by this mechanism in a very clumpy medium, as revealed by the emission from molecular hydrogen, appears to be a coherent outflowing feature.
96 - J. Meaburn 2005
A deep, continuum-subtracted, image of NGC 7293 has been obtained in the light of the Halpha+[N II] emission lines. New images of two filamentary halo stuctures have been obtained and the possible detection of a collimated outflow made. Spatially res olved, longslit profiles of the Halpha+[N II] lines have been observed across several of these features with the MES combined with the SPM 2.1m telescope; these are compared with the [N II]6584, [O III]5007, HeII 6560 and Halpha profiles obtained over the nebular core. The central HeII emission is originating in a ~0.34pc diameter spherical volume expanding at <=12km/s which is surrounded, and partially coincident with an [O III] emitting inner shell expanding at 12km/s. The bright helical structure surrounding this inner region is modelled as a bi-polar nebula with lobe expansions of 25km/s whose axis is tilted at 37deg to the sight line but with a toroidal waist itself expanding at 14 km/s. These observations are compared with the expectations of the interacting two winds model for the formation of PNe. Only after the fast wind has switched off could this global velocity structure be generated. Ablated flows must complicate any interpretation. It is suggested that the clumpy nature of much of the material could play a part in creating the radial `spokes shown here to be apparently present close to the central star. These `spokes could in fact be the persistant tails of cometary globules whose heads have now photo-evaporated completely. A halo arc projecting from the north-east of the bright core has a conterpart to the south-east. Anomolies in the position-velocity arrays of line profiles could suggest that these are part of an expanding disc not aligned with the central helical structure though expanding bi-polar lobes along a tilted axis are not ruled out.
In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Images at 70, 160, 250, 350, and 500 micron were obtained with the PACS and SPIRE instrum ents on board the Herschel satellite. The broadband maps show the dust distribution over the main Helix nebula to be clumpy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel, IRAS, and Planck flux values. The emissivity index of 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 micron and the flux measurement agree with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 0.0035 solar mass at a distance of 216 pc. The temperature map shows dust temperatures between 22 and 42 K, which is similar to the kinetic temperature of the molecular gas, strengthening the fact that the dust and gas co-exist in high density clumps. Archived images are used to compare the location of the dust emission in the far infrared (Herschel) with the ionized (GALEX, Hbeta) and molecular hydrogen component. The different emission components are consistent with the Helix consisting of a thick walled barrel-like structure inclined to the line of sight. The radiation field decreases rapidly through the barrel wall.
Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high speed wind from WC8 central star (CS) with the nebula. It shows strong Civ 1550 {AA} emission that cannot be explained by thermal processes alone . We present here the first map of this nebula in C IV emission, using broad band filters on the UVIT. Aims. To map the hot C IV emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions, in order to study the shock interaction with the nebula and the ISM. This also illustrates the potential of UVIT for nebular studies. Methods. Morphological study of images of the nebula obtained at an angular resolution of about 1.3 in four UVIT filter bands that include C IV 1550 {AA} and C II] 2326 {AA} lines and UV continuum. Comparisons with X-ray, optical, and IR images from literature. Results. The C II] 2326 {AA} images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extant as that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint FUV halo in FUV Filter with {lambda}eff of 1608 {AA}. The UV halo is not present in any other UV filter. FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, FUV halo trails predominantly towards south-east side of the nebular core, opposite to the CSs proper motion direction. Conclusions. Morphological similarity of C IV 1550 {AA} and X-ray emission in the core suggests that it results mostly from interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the existence of H2 molecules extensively in the regions even beyond the optical and IR halos.
200 - M. Matsuura 2007
Knots are commonly found in nearby planetary nebulae (PNe) and star forming regions. Within PNe, knots are often found to be associated with the brightest parts of the nebulae and understanding the physics involved in knots may reveal the processes d ominating in PNe. As one of the closest PNe, the Helix Nebula (NGC 7293) is an ideal target to study such small-scale (~300 AU) structures. We have obtained infrared integral spectroscopy of a comet-shaped knot in the Helix Nebula using SINFONI on the Very Large Telescope at high spatial resolution (50-125 mas). With spatially resolved 2 micron spectra, we find that the H2 rotational temperature within the cometary knots is uniform. The rotational-vibrational temperature of the cometary knot (situated in the innermost region of the nebula, 2.5 arcmin away from the central star), is 1800 K, higher than the temperature seen in the outer regions (5-6 arcmin from the central star) of the nebula (900 K), showing that the excitation temperature varies across the nebula. The obtained intensities are reasonably well fitted with 27 km s-1 C-type shock model. This ambient gas velocity is slightly higher than the observed [HeII] wind velocity of 13 km s-1. The gas excitation can also be reproduced with a PDR (photo dominant region) model, but this requires an order of magnitude higher UV radiation. Both models have limitations, highlighting the need for models that treats both hydrodynamical physics and the PDR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا