ﻻ يوجد ملخص باللغة العربية
In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Images at 70, 160, 250, 350, and 500 micron were obtained with the PACS and SPIRE instruments on board the Herschel satellite. The broadband maps show the dust distribution over the main Helix nebula to be clumpy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel, IRAS, and Planck flux values. The emissivity index of 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 micron and the flux measurement agree with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 0.0035 solar mass at a distance of 216 pc. The temperature map shows dust temperatures between 22 and 42 K, which is similar to the kinetic temperature of the molecular gas, strengthening the fact that the dust and gas co-exist in high density clumps. Archived images are used to compare the location of the dust emission in the far infrared (Herschel) with the ionized (GALEX, Hbeta) and molecular hydrogen component. The different emission components are consistent with the Helix consisting of a thick walled barrel-like structure inclined to the line of sight. The radiation field decreases rapidly through the barrel wall.
The Helix Nebula (NGC 7293) is the closest planetary nebulae. Therefore, it is an ideal template for photochemical studies at small spatial scales in planetary nebulae. We aim to study the spatial distribution of the atomic and the molecular gas, and
Previous velocity images which reveal flows of ionized gas along the most prominent cometary tail (from Knot 38) in the Helix planetary nebula are compared with that taken at optical wavelengths with the Hubble Space Telescope and with an image in th
A deep, continuum-subtracted, image of NGC 7293 has been obtained in the light of the Halpha+[N II] emission lines. New images of two filamentary halo stuctures have been obtained and the possible detection of a collimated outflow made. Spatially res
Knots are commonly found in nearby planetary nebulae (PNe) and star forming regions. Within PNe, knots are often found to be associated with the brightest parts of the nebulae and understanding the physics involved in knots may reveal the processes d
In previous, very deep, optical images of NGC 7293 both a feature that has the morphology of a bow-shock and one with that of a jet were discovered in the faint 40 arcmin diameter halo of the nebula. Spatially resolved longslit profiles of the Halpha