ﻻ يوجد ملخص باللغة العربية
Knots are commonly found in nearby planetary nebulae (PNe) and star forming regions. Within PNe, knots are often found to be associated with the brightest parts of the nebulae and understanding the physics involved in knots may reveal the processes dominating in PNe. As one of the closest PNe, the Helix Nebula (NGC 7293) is an ideal target to study such small-scale (~300 AU) structures. We have obtained infrared integral spectroscopy of a comet-shaped knot in the Helix Nebula using SINFONI on the Very Large Telescope at high spatial resolution (50-125 mas). With spatially resolved 2 micron spectra, we find that the H2 rotational temperature within the cometary knots is uniform. The rotational-vibrational temperature of the cometary knot (situated in the innermost region of the nebula, 2.5 arcmin away from the central star), is 1800 K, higher than the temperature seen in the outer regions (5-6 arcmin from the central star) of the nebula (900 K), showing that the excitation temperature varies across the nebula. The obtained intensities are reasonably well fitted with 27 km s-1 C-type shock model. This ambient gas velocity is slightly higher than the observed [HeII] wind velocity of 13 km s-1. The gas excitation can also be reproduced with a PDR (photo dominant region) model, but this requires an order of magnitude higher UV radiation. Both models have limitations, highlighting the need for models that treats both hydrodynamical physics and the PDR.
Previous velocity images which reveal flows of ionized gas along the most prominent cometary tail (from Knot 38) in the Helix planetary nebula are compared with that taken at optical wavelengths with the Hubble Space Telescope and with an image in th
A deep, continuum-subtracted, image of NGC 7293 has been obtained in the light of the Halpha+[N II] emission lines. New images of two filamentary halo stuctures have been obtained and the possible detection of a collimated outflow made. Spatially res
In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Images at 70, 160, 250, 350, and 500 micron were obtained with the PACS and SPIRE instrum
Molecular hydrogen emission is commonly observed in planetary nebulae. Images taken in infrared H2 emission lines show that at least part of the molecular emission is produced inside the ionised region. In the best-studied case, the Helix nebula, the
In previous, very deep, optical images of NGC 7293 both a feature that has the morphology of a bow-shock and one with that of a jet were discovered in the faint 40 arcmin diameter halo of the nebula. Spatially resolved longslit profiles of the Halpha