ﻻ يوجد ملخص باللغة العربية
Many applications in science call for the numerical simulation of systems on manifolds with spherical topology. Through use of integer spin weighted spherical harmonics we present a method which allows for the implementation of arbitrary tensorial evolution equations. Our method combines two numerical techniques that were originally developed with different applications in mind. The first is Huffenberger and Wandelts spectral decomposition algorithm to perform the mapping from physical to spectral space. The second is the application of Luscombe and Lubans method, to convert numerically divergent linear recursions into stable nonlinear recursions, to the calculation of reduced Wigner d-functions. We give a detailed discussion of the theory and numerical implementation of our algorithm. The properties of our method are investigated by solving the scalar and vectorial advection equation on the sphere, as well as the 2+1 Maxwell equations on a deformed sphere.
We present a new spectral scheme for analysing functions of half-integer spin-weight on the $2$-sphere and demonstrate the stability and convergence properties of our implementation. The dynamical evolution of the Dirac equation on a manifold with sp
We build a family of explicit one-forms on $S^3$ which are shown to form a complete set of eigenmodes for the Laplace-de Rahm operator.
This is a direct computation of the spectral representation of homogeneous spin-weighted spherical random fields with arbitrary integer spin. It generalises known results from Cosmology for the spin-2 Cosmic Microwave Background polarisation and Cosm
A fast and exact algorithm is developed for the spin +-2 spherical harmonics transforms on equi-angular pixelizations on the sphere. It is based on the Driscoll and Healy fast scalar spherical harmonics transform. The theoretical exactness of the tra
We study the (massless) Dirac operator on a 3-sphere equipped with Riemannian metric. For the standard metric the spectrum is known. In particular, the eigenvalues closest to zero are the two double eigenvalues +3/2 and -3/2. Our aim is to analyse th