ﻻ يوجد ملخص باللغة العربية
This is a direct computation of the spectral representation of homogeneous spin-weighted spherical random fields with arbitrary integer spin. It generalises known results from Cosmology for the spin-2 Cosmic Microwave Background polarisation and Cosmic Shear fields, without decomposition into $E$- and $B$-modes. The derivation uses an instructive representation of spin-weighted spherical functions over the Spin(3) group, where the transformation behaviour of spin-weighted fields can be treated more naturally than over the sphere, and where the group nature of Spin(3) greatly simplifies calculations for homogeneous spherical fields. It is shown that i) different modes of spin-weighted spherical random fields are generally uncorrelated, ii) the usual definition of the power spectrum generalises, iii) there is a simple relation to recover the correlation function from the power spectrum, and iv) the spectral representation is a sufficient condition for homogeneity of the fields.
Many applications in science call for the numerical simulation of systems on manifolds with spherical topology. Through use of integer spin weighted spherical harmonics we present a method which allows for the implementation of arbitrary tensorial ev
We establish spectral expansions of homogeneous and isotropic random fields taking values in the $3$-dimensional Euclidean space $E^3$ and in the space $mathsf{S}^2(E^3)$ of symmetric rank $2$ tensors over $E^3$. The former is a model of turbulent fl
Series expansions of isotropic Gaussian random fields on $mathbb{S}^2$ with independent Gaussian coefficients and localized basis functions are constructed. Such representations provide an alternative to the standard Karhunen-Lo`eve expansions of iso
We present a new spectral scheme for analysing functions of half-integer spin-weight on the $2$-sphere and demonstrate the stability and convergence properties of our implementation. The dynamical evolution of the Dirac equation on a manifold with sp
This paper develops a fractional stochastic partial differential equation (SPDE) to model the evolution of a random tangent vector field on the unit sphere. The SPDE is governed by a fractional diffusion operator to model the L{e}vy-type behaviour of