ﻻ يوجد ملخص باللغة العربية
We introduce a broadly applicable technique to create nuclear spin singlet states in organic molecules and other many-atom systems. We employ a novel pulse sequence to produce a spin-lock induced crossing (SLIC) of the spin singlet and triplet energy levels, which enables triplet/singlet polarization transfer and singlet state preparation. We demonstrate the utility of the SLIC method by producing a long-lived nuclear spin singlet state on two strongly-coupled proton pairs in the tripeptide molecule phenylalanine-glycine-glycine dissolved in D2O, and by using SLIC to measure the J-couplings, chemical shift differences, and singlet lifetimes of the proton pairs. We show that SLIC is more efficient at creating nearly-equivalent nuclear spin singlet states than previous pulse sequence techniques, especially when triplet/singlet polarization transfer occurs on the same timescale as spin-lattice relaxation.
Nuclear magnetic resonance (NMR) spectroscopy usually requires high magnetic fields to create spectral resolution among different proton species. At low fields, chemical shift dispersion is insufficient to separate the species, and the spectrum exhib
The coherent high-fidelity generation of nuclear spins in long-lived singlet states which may find application as quantum memory or sensor represents a considerable experimental challenge. Here we propose a dissipative scheme that achieves the prepar
$^{31}$P NMR and MRI are commonly used to study organophosphates that are central to cellular energy metabolism. In some molecules of interest, such as adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD), pairs of coupled $^{31}$P
We measure the lifetime of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field and present a simple theoretical model that agrees well with our measurements, including the low-RF-power regime. We also mea
The generation and control of neutron orbital angular momentum (OAM) states and spin correlated OAM (spin-orbit) states provides a powerful probe of materials with unique penetrating abilities and magnetic sensitivity. We describe techniques to prepa