ﻻ يوجد ملخص باللغة العربية
Nuclear magnetic resonance (NMR) spectroscopy usually requires high magnetic fields to create spectral resolution among different proton species. At low fields, chemical shift dispersion is insufficient to separate the species, and the spectrum exhibits just a single line. In this work, we demonstrate that spectra can nevertheless be acquired at low field using a novel pulse sequence called spin-lock induced crossing (SLIC). This probes energy level crossings induced by a weak spin-locking pulse and produces a unique J-coupling spectrum for most organic molecules. Unlike other forms of low-field J-coupling spectroscopy, our technique does not require the presence of heteronuclei and can be used for most compounds in their native state. We performed SLIC spectroscopy on a number of small molecules at 276 kHz and 20.8 MHZ, and we show that SLIC spectra can be simulated in good agreement with measurements.
We introduce a broadly applicable technique to create nuclear spin singlet states in organic molecules and other many-atom systems. We employ a novel pulse sequence to produce a spin-lock induced crossing (SLIC) of the spin singlet and triplet energy
The error-robust and short composite operations named ConCatenated Composite Pulses (CCCPs), developed as high-precision unitary operations in quantum information processing (QIP), are derived from composite pulses widely employed in nuclear magnetic
Low-field (6-110 mT) magnetic resonance of bismuth (Bi) donors in silicon has been observed by monitoring the change in photoconductivity induced by spin dependent recombination. The spectra at various resonance frequencies show signal intensity dist
The existence of a spin-orbit coupling (SOC) induced by the gradient of the effective mass in low-dimensional heterostructures is revealed. In structurally asymmetric quasi-two-dimensional semiconductor heterostructures the presence of a mass gradien
We present a study of the Rydberg spectrum in ts{166}Er for series connected to the $4f^{12} (^3H_6) 6s$, $J_c=13/2 $ and $J_c=11/2 $ ionic core states using an all-optical detection based on electromagnetically induced transparency in an effusive at