ﻻ يوجد ملخص باللغة العربية
Observations of magnetars and some of the high magnetic field pulsars have shown that their thermal luminosity is systematically higher than that of classical radio-pulsars, thus confirming the idea that magnetic fields are involved in their X-ray emission. Here we present the results of 2D simulations of the fully-coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term. After gathering and thoroughly re-analysing in a consistent way all the best available data on isolated, thermally emitting neutron stars, we compare our theoretical models to a data sample of 40 sources. We find that our evolutionary models can explain the phenomenological diversity of magnetars, high-B radio-pulsars, and isolated nearby neutron stars by only varying their initial magnetic field, mass and envelope composition. Nearly all sources appear to follow the expectations of the standard theoretical models. Finally, we discuss the expected outburst rates and the evolutionary links between different classes. Our results constitute a major step towards the grand unification of the isolated neutron star zoo.
The strong magnetic field of neutron stars is intimately coupled to the observed temperature and spectral properties, as well as to the observed timing properties (distribution of spin periods and period derivatives). Thus, a proper theoretical and n
We study the mutual influence of thermal and magnetic evolution in a neutron stars crust in axial symmetry. Taking into account realistic microphysical inputs, we find the heat released by Joule effect consistent with the circulation of currents in t
We revisit the population synthesis of isolated radio-pulsars incorporating recent advances on the evolution of the magnetic field and the angle between the magnetic and rotational axes from new simulations of the magneto-thermal evolution and magnet
The possibility for direct investigation of thermal emission from isolated neutron stars was opened about 25 years ago with the launch of the first X-ray observatory, Einstein. A significant contribution to this study was provided by ROSAT in 1990s.
Neutron stars harbour extremely strong magnetic fields within their solid outer crust. The topology of this field strongly influences the surface temperature distribution, and hence the stars observational properties. In this work, we present the fir