ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal emission from isolated neutron stars: theoretical and observational aspects

55   0   0.0 ( 0 )
 نشر من قبل Vyacheslav Zavlin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility for direct investigation of thermal emission from isolated neutron stars was opened about 25 years ago with the launch of the first X-ray observatory, Einstein. A significant contribution to this study was provided by ROSAT in 1990s. The outstanding capabilities of the currently operating observatories, Chandra and XMM-Newton, have greatly increased the potential to observe and analyze thermal radiation from the neutron star surfaces. Confronting observational data with theoretical models of thermal emission, presumably formed in neutron star atmospheres, allows one to infer the surface temperatures, magnetic fields, chemical composition, and neutron star masses and radii. This information, supplemented with model equations of state and neutron star cooling models, provides an opportunity to understand the fundamental properties of the superdense matter in the neutron star interiors. I review the current status and most important results obtained from modeling neutron star thermal emission and present selected Chandra and XMM-Newton results on thermal radiation from various types of these objects: ordinary radio pulsars with ages ranging from about 2 kyr to 20 Myr (J1119-6127, Vela, B1706-44, J0538+2817, B2334+61, B0656+14, B1055-52, Geminga, B0950+08, J2043+2740), millisecond pulsars (J0030+0451, J2124-3358, J1024-0719, J0437-4715), putative pulsars (CXOU J061705.3+222127, RX J0007.0+7302), central compact objects in supernova remnats (in particular, 1E 1207.4-5209), and isolated radio-quiet neutron stars.



قيم البحث

اقرأ أيضاً

260 - Daniele Vigan`o 2013
Observations of magnetars and some of the high magnetic field pulsars have shown that their thermal luminosity is systematically higher than that of classical radio-pulsars, thus confirming the idea that magnetic fields are involved in their X-ray em ission. Here we present the results of 2D simulations of the fully-coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term. After gathering and thoroughly re-analysing in a consistent way all the best available data on isolated, thermally emitting neutron stars, we compare our theoretical models to a data sample of 40 sources. We find that our evolutionary models can explain the phenomenological diversity of magnetars, high-B radio-pulsars, and isolated nearby neutron stars by only varying their initial magnetic field, mass and envelope composition. Nearly all sources appear to follow the expectations of the standard theoretical models. Finally, we discuss the expected outburst rates and the evolutionary links between different classes. Our results constitute a major step towards the grand unification of the isolated neutron star zoo.
The strong magnetic field of neutron stars is intimately coupled to the observed temperature and spectral properties, as well as to the observed timing properties (distribution of spin periods and period derivatives). Thus, a proper theoretical and n umerical study of the magnetic field evolution equations, supplemented with detailed calculations of microphysical properties (heat and electrical conductivity, neutrino emission rates) is crucial to understand how the strength and topology of the magnetic field vary as a function of age, which in turn is the key to decipher the physical processes behind the varied neutron star phenomenology. In this review, we go through the basic theory describing the magneto-thermal evolution models of neutron stars, focusing on numerical techniques, and providing a battery of benchmark tests to be used as a reference for present and future code developments. We summarize well-known results from axisymmetric cases, give a new look at the latest 3D advances, and present an overview of the expectations for the field in the coming years.
X-ray emission from the surface of isolated neutron stars (NSs) has been now observed in a variety of sources. The ubiquitous presence of pulsations clearly indicates that thermal photons either come from a limited area, possibly heated by some exter nal mechanism, or from the entire (cooling) surface but with an inhomogeneous temperature distribution. In a NS the thermal map is shaped by the magnetic field topology, since heat flows in the crust mostly along the magnetic field lines. Self-consistent surface thermal maps can hence be produced by simulating the coupled magnetic and thermal evolution of the star. We compute the evolution of the neutron star crust in three dimensions for different initial configurations of the magnetic field and use the ensuing thermal surface maps to derive the spectrum and the pulse profile as seen by an observer at infinity, accounting for general-relativistic effects. In particular, we compare cases with a high degree of symmetry with inherently 3D ones, obtained by adding a quadrupole to the initial dipolar field. Axially symmetric fields result in rather small pulsed fractions ($lesssim 5%$), while more complex configurations produce higher pulsed fractions, up to $sim25%$. We find that the spectral properties of our axisymmetric model are close to those of the bright isolated NS RX~J1856.5-3754 at an evolutionary time comparable with the inferred dynamical age of the source.
107 - V.I. Kondratiev 2009
We have carried out a search for radio emission at 820 MHz from six X-ray dim isolated neutron stars with the Robert C. Byrd Green Bank Radio Telescope. No transient or pulsed emission was found using fast folding, fast Fourier transform, and single- pulse searches. The corresponding flux limits are about 0.01 mJy for pulsed emission, depending on the integration time for the particular source and assuming a duty cycle of 2%, and 20 mJy for single dispersed pulses. These are the most sensitive limits to date on radio emission from X-ray dim isolated neutron stars. There is no evidence for isolated radio pulses, as seen in a class of neutron stars known as rotating radio transients. Our results imply that either the radio luminosities of these objects are lower than those of any known radio pulsars, or they could simply be long-period nearby radio pulsars with high magnetic fields beaming away from the Earth. To test the latter possibility, we would need around 40 similar sources to provide a 1 sigma probability of at least one of them beaming toward us. We also give a detailed description of our implementation of the Fast Folding Algorithm.
78 - S.B. Popov 2003
The origin of the local population of young, cooling neutron stars is investigated with a population synthesis model taking into account the contribution of neutron stars born in the Gould Belt, in addition to those originating in the Galactic disk. We estimate their emission in the soft X-ray band as a function of distance and age and construct the Log N -- Log S distribution. It is shown that the inclusion of neutron stars from the Gould Belt provides a good fit to the observed Log N -- Log S distribution. As the Sun is situated inside the Gould Belt, one can naturally explain the comparative local overabundance of massive progenitors and can remove the difficulty of the deficit of relatively bright ($ga 0.1$ ROSAT PSPC cts s$^{-1}$) cooling neutron stars previously reported from models where only neutron stars from the Galactic disk were accounted for.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا