ﻻ يوجد ملخص باللغة العربية
Neutron stars harbour extremely strong magnetic fields within their solid outer crust. The topology of this field strongly influences the surface temperature distribution, and hence the stars observational properties. In this work, we present the first realistic simulations of the coupled crustal magneto-thermal evolution of isolated neutron stars in three dimensions with account for neutrino emission, obtained with the pseudo-spectral code Parody. We investigate both the secular evolution, especially in connection with the onset of instabilities during the Hall phase, and the short-term evolution following episodes of localised energy injection. Simulations show that a resistive tearing instability develops in about a Hall time if the initial toroidal field exceeds ~$10^{15}$ G. This leads to crustal failures because of the huge magnetic stresses coupled with the local temperature enhancement produced by dissipation. Localised heat deposition in the crust results in the appearance of hot spots on the star surface which can exhibit a variety of patterns. Since the transport properties are strongly influenced by the magnetic field, the hot regions tend to drift away and get deformed following the magnetic field lines while cooling. The shapes obtained with our simulations are reminiscent of those recently derived from NICER X-ray observations of the millisecond pulsar PSR J0030+0451.
We study the mutual influence of thermal and magnetic evolution in a neutron stars crust in axial symmetry. Taking into account realistic microphysical inputs, we find the heat released by Joule effect consistent with the circulation of currents in t
The strong magnetic field of neutron stars is intimately coupled to the observed temperature and spectral properties, as well as to the observed timing properties (distribution of spin periods and period derivatives). Thus, a proper theoretical and n
We revisit the population synthesis of isolated radio-pulsars incorporating recent advances on the evolution of the magnetic field and the angle between the magnetic and rotational axes from new simulations of the magneto-thermal evolution and magnet
We study long-term thermal evolution of neutron stars in soft X-ray transients (SXTs), taking the deep crustal heating into account consistently with the changes of the composition of the crust. We collect observational estimates of average accretion
Simulating the long-term evolution of temperature and magnetic fields in neutron stars is a major effort in astrophysics, having significant impact in several topics. A detailed evolutionary model requires, at the same time, the numerical solution of