ﻻ يوجد ملخص باللغة العربية
The vertex arboricity $a(G)$ of a graph $G$ is the minimum $k$ such that $V(G)$ can be partitioned into $k$ sets where each set induces a forest. For a planar graph $G$, it is known that $a(G)leq 3$. In two recent papers, it was proved that planar graphs without $k$-cycles for some $kin{3, 4, 5, 6, 7}$ have vertex arboricity at most 2. For a toroidal graph $G$, it is known that $a(G)leq 4$. Let us consider the following question: do toroidal graphs without $k$-cycles have vertex arboricity at most 2? It was known that the question is true for k=3, and recently, Zhang proved the question is true for $k=5$. Since a complete graph on 5 vertices is a toroidal graph without any $k$-cycles for $kgeq 6$ and has vertex arboricity at least three, the only unknown case was k=4. We solve this case in the affirmative; namely, we show that toroidal graphs without 4-cycles have vertex arboricity at most 2.
We initiate a systematic study of the fractional vertex-arboricity of planar graphs and demonstrate connections to open problems concerning both fractional coloring and the size of the largest induced forest in planar graphs. In particular, the follo
Arboricity is a graph parameter akin to chromatic number, in that it seeks to partition the vertices into the smallest number of sparse subgraphs. Where for the chromatic number we are partitioning the vertices into independent sets, for the arborici
A $k$-linear coloring of a graph $G$ is an edge coloring of $G$ with $k$ colors so that each color class forms a linear forest -- a forest whose each connected component is a path. The linear arboricity $chi_l(G)$ of $G$ is the minimum integer $k$ su
All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-choosable. Determining which properties guarantee that a planar graph can be colored using lists of size four has received significant attention. In terms of constr
Given a graph $G$, the strong clique number of $G$, denoted $omega_S(G)$, is the maximum size of a set $S$ of edges such that every pair of edges in $S$ has distance at most $2$ in the line graph of $G$. As a relaxation of the renowned ErdH{o}s--Nev{