ترغب بنشر مسار تعليمي؟ اضغط هنا

(4,2)-choosability of planar graphs with forbidden structures

81   0   0.0 ( 0 )
 نشر من قبل Derrick Stolee
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-choosable. Determining which properties guarantee that a planar graph can be colored using lists of size four has received significant attention. In terms of constraining the structure of the graph, for any $ell in {3,4,5,6,7}$, a planar graph is 4-choosable if it is $ell$-cycle-free. In terms of constraining the list assignment, one refinement of $k$-choosability is choosability with separation. A graph is $(k,s)$-choosable if the graph is colorable from lists of size $k$ where adjacent vertices have at most $s$ common colors in their lists. Every planar graph is $(4,1)$-choosable, but there exist planar graphs that are not $(4,3)$-choosable. It is an open question whether planar graphs are always $(4,2)$-choosable. A chorded $ell$-cycle is an $ell$-cycle with one additional edge. We demonstrate for each $ell in {5,6,7}$ that a planar graph is $(4,2)$-choosable if it does not contain chorded $ell$-cycles.



قيم البحث

اقرأ أيضاً

66 - Yangyan Gu , Xuding Zhu 2021
Assume $ k $ is a positive integer, $ lambda={k_1,k_2,...,k_q} $ is a partition of $ k $ and $ G $ is a graph. A $lambda$-assignment of $ G $ is a $ k $-assignment $ L $ of $ G $ such that the colour set $ bigcup_{vin V(G)} L(v) $ can be partitioned into $ q $ subsets $ C_1cup C_2cupcdotscup C_q $ and for each vertex $ v $ of $ G $, $ |L(v)cap C_i|=k_i $. We say $ G $ is $lambda$-choosable if for each $lambda$-assignment $ L $ of $ G $, $ G $ is $ L $-colourable. In particular, if $ lambda={k} $, then $lambda$-choosable is the same as $ k $-choosable, if $ lambda={1, 1,...,1} $, then $lambda$-choosable is equivalent to $ k $-colourable. For the other partitions of $ k $ sandwiched between $ {k} $ and $ {1, 1,...,1} $ in terms of refinements, $lambda$-choosability reveals a complex hierarchy of colourability of graphs. Assume $lambda={k_1, ldots, k_q} $ is a partition of $ k $ and $lambda $ is a partition of $ kge k $. We write $ lambdale lambda $ if there is a partition $lambda={k_1, ldots, k_q}$ of $k$ with $k_i ge k_i$ for $i=1,2,ldots, q$ and $lambda$ is a refinement of $lambda$. It follows from the definition that if $ lambdale lambda $, then every $lambda$-choosable graph is $lambda$-choosable. It was proved in [X. Zhu, A refinement of choosability of graphs, J. Combin. Theory, Ser. B 141 (2020) 143 - 164] that the converse is also true. This paper strengthens this result and proves that for any $ lambda otle lambda $, for any integer $g$, there exists a graph of girth at least $g$ which is $lambda$-choosable but not $lambda$-choosable.
An (improper) graph colouring has defect $d$ if each monochromatic subgraph has maximum degree at most $d$, and has clustering $c$ if each monochromatic component has at most $c$ vertices. This paper studies defective and clustered list-colourings fo r graphs with given maximum average degree. We prove that every graph with maximum average degree less than $frac{2d+2}{d+2} k$ is $k$-choosable with defect $d$. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree $m$, no $(1-epsilon)m$ bound on the number of colours was previously known. The above result with $d=1$ solves this problem. It implies that every graph with maximum average degree $m$ is $lfloor{frac{3}{4}m+1}rfloor$-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree $m$ is $lfloor{frac{7}{10}m+1}rfloor$-choosable with clustering $9$, and is $lfloor{frac{2}{3}m+1}rfloor$-choosable with clustering $O(m)$. As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented.
72 - Mohit Kumbhat , Kevin Moss , 2015
List coloring generalizes graph coloring by requiring the color of a vertex to be selected from a list of colors specific to that vertex. One refinement of list coloring, called choosability with separation, requires that the intersection of adjacent lists is sufficiently small. We introduce a new refinement, called choosability with union separation, where we require that the union of adjacent lists is sufficiently large. For $t geq k$, a $(k,t)$-list assignment is a list assignment $L$ where $|L(v)| geq k$ for all vertices $v$ and $|L(u)cup L(v)| geq t$ for all edges $uv$. A graph is $(k,t)$-choosable if there is a proper coloring for every $(k,t)$-list assignment. We explore this concept through examples of graphs that are not $(k,t)$-choosable, demonstrating sparsity conditions that imply a graph is $(k,t)$-choosable, and proving that all planar graphs are $(3,11)$-choosable and $(4,9)$-choosable.
149 - Ilkyoo Choi , Haihui Zhang 2013
The vertex arboricity $a(G)$ of a graph $G$ is the minimum $k$ such that $V(G)$ can be partitioned into $k$ sets where each set induces a forest. For a planar graph $G$, it is known that $a(G)leq 3$. In two recent papers, it was proved that planar gr aphs without $k$-cycles for some $kin{3, 4, 5, 6, 7}$ have vertex arboricity at most 2. For a toroidal graph $G$, it is known that $a(G)leq 4$. Let us consider the following question: do toroidal graphs without $k$-cycles have vertex arboricity at most 2? It was known that the question is true for k=3, and recently, Zhang proved the question is true for $k=5$. Since a complete graph on 5 vertices is a toroidal graph without any $k$-cycles for $kgeq 6$ and has vertex arboricity at least three, the only unknown case was k=4. We solve this case in the affirmative; namely, we show that toroidal graphs without 4-cycles have vertex arboricity at most 2.
Given a graph $G$, the strong clique number of $G$, denoted $omega_S(G)$, is the maximum size of a set $S$ of edges such that every pair of edges in $S$ has distance at most $2$ in the line graph of $G$. As a relaxation of the renowned ErdH{o}s--Nev{ s}etv{r}il conjecture regarding the strong chromatic index, Faudree et al. suggested investigating the strong clique number, and conjectured a quadratic upper bound in terms of the maximum degree. Recently, Cames van Batenburg, Kang, and Pirot conjectured a linear upper bound in terms of the maximum degree for graphs without even cycles. Namely, if $G$ is a $C_{2k}$-free graph, then $omega_S(G)leq (2k-1)Delta(G)-{2k-1choose 2}$, and if $G$ is a $C_{2k}$-free bipartite graph, then $omega_S(G)leq kDelta(G)-(k-1)$. We prove the second conjecture in a stronger form, by showing that forbidding all odd cycles is not necessary. To be precise, we show that a ${C_5, C_{2k}}$-free graph $G$ with $Delta(G)ge 1$ satisfies $omega_S(G)leq kDelta(G)-(k-1)$, when either $kgeq 4$ or $kin {2,3}$ and $G$ is also $C_3$-free. Regarding the first conjecture, we prove an upper bound that is off by the constant term. Namely, for $kgeq 3$, we prove that a $C_{2k}$-free graph $G$ with $Delta(G)ge 1$ satisfies $omega_S(G)leq (2k-1)Delta(G)+(2k-1)^2$. This improves some results of Cames van Batenburg, Kang, and Pirot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا