ﻻ يوجد ملخص باللغة العربية
Arboricity is a graph parameter akin to chromatic number, in that it seeks to partition the vertices into the smallest number of sparse subgraphs. Where for the chromatic number we are partitioning the vertices into independent sets, for the arboricity we want to partition the vertices into cycle-free subsets (i.e., forests). Arboricity is NP-hard in general, and our focus is on the arboricity of cographs. For arboricity two, we obtain the complete list of minimal cograph obstructions. These minimal obstructions do generalize to higher arboricities; however, we no longer have a complete list, and in fact, the number of minimal cograph obstructions grows exponentially with arboricity. We obtain bounds on their size and the height of their cotrees. More generally, we consider the following common generalization of colouring and partition into forests: given non-negative integers $p$ and $q$, we ask if a given cograph $G$ admits a vertex partition into $p$ forests and $q$ independent sets. We give a polynomial-time dynamic programming algorithm for this problem. In fact, the algorithm solves a more general problem which also includes several other problems such as finding a maximum $q$-colourable subgraph, maximum subgraph of arboricity-$p$, minimum vertex feedback set and minimum $q$ of a $q$-colourable vertex feedback set.
We initiate a systematic study of the fractional vertex-arboricity of planar graphs and demonstrate connections to open problems concerning both fractional coloring and the size of the largest induced forest in planar graphs. In particular, the follo
The vertex arboricity $a(G)$ of a graph $G$ is the minimum $k$ such that $V(G)$ can be partitioned into $k$ sets where each set induces a forest. For a planar graph $G$, it is known that $a(G)leq 3$. In two recent papers, it was proved that planar gr
A $k$-linear coloring of a graph $G$ is an edge coloring of $G$ with $k$ colors so that each color class forms a linear forest -- a forest whose each connected component is a path. The linear arboricity $chi_l(G)$ of $G$ is the minimum integer $k$ su
We show that every countable cograph has either one or infinitely many siblings. This answers, very partially, a conjecture of Thomasse. The main tools are the notion of well quasi ordering and the correspondence between cographs and some labelled ordered trees.
We give the first $2$-approximation algorithm for the cluster vertex deletion problem. This is tight, since approximating the problem within any constant factor smaller than $2$ is UGC-hard. Our algorithm combines the previous approaches, based on th