ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Tunneling by Adiabatic Passage of an exchange-only spin qubit in a double quantum dot chain

165   0   0.0 ( 0 )
 نشر من قبل Elena Ferraro Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A scheme based on Coherent Tunneling by Adiabatic Passage (CTAP) of exchange-only spin qubit quantum states in a linearly arranged double quantum dot chain is demonstrated. Logical states for the qubit are defined by adopting the spin state of three electrons confined in a double quantum dot. The possibility to obtain gate operations entirely with electrical manipulations makes this qubit a valuable architecture in the field of quantum computing for the implementation of quantum algorithms. The effect of the external control parameters as well as the effect of the dephasing on the coherent tunneling in the chain is studied. During adiabatic transport, within a constant energy degenerate eigenspace, the states in the double quantum dots internal to the chain are not populated, while transient populations of the mixed states in the external ones are predicted.



قيم البحث

اقرأ أيضاً

We introduce an adiabatic transfer protocol for spin states in large quantum dot arrays that is based on time-dependent modulation of the Heisenberg exchange interaction in the presence of a magnetic field gradient. We refer to this protocol as spin- CTAP (coherent transport by adiabatic passage) in analogy to a related protocol developed for charge state transfer in quantum dot arrays. The insensitivity of this adiabatic protocol to pulse imperfections has potential advantages for reading out extended spin qubit arrays. When the static exchange interaction varies across the array, a quantum-controlled version of spin-CTAP is possible, where the transfer process is conditional on the spin states in the middle of the array. This conditional operation can be used to generate N-qubit entangled GHZ states. Using a realistic noise model, we analyze the robustness of the spin-CTAP operations and find that high-fidelity (>95%) spin eigenstate transfer and GHZ state preparation is feasible in current devices.
Initialization, manipulation, and measurement of a three-spin qubit are demonstrated using a few-electron triple quantum dot, where all operations can be driven by tuning the nearest-neighbor exchange interaction. Multiplexed reflectometry, applied t o two nearby charge sensors, allows for qubit readout. Decoherence is found to be consistent with predictions based on gate voltage noise with a uniform power spectrum. The theory of the exchange-only qubit is developed and it is shown that initialization of only two spins suffices for operation. Requirements for full multi-qubit control using only exchange and electrostatic interactions are outlined.
Quantum gates between spin qubits can be implemented leveraging the natural Heisenberg exchange interaction between two electrons in contact with each other. This interaction is controllable by electrically tailoring the overlap between electronic wa vefunctions in quantum dot systems, as long as they occupy neighbouring dots. An alternative route is the exploration of superexchange - the coupling between remote spins mediated by a third idle electron that bridges the distance between quantum dots. We experimentally demonstrate direct exchange coupling and provide evidence for second neighbour mediated superexchange in a linear array of three single-electron spin qubits in silicon, inferred from the electron spin resonance frequency spectra. We confirm theoretically through atomistic modeling that the device geometry only allows for sizeable direct exchange coupling for neighbouring dots, while next nearest neighbour coupling cannot stem from the vanishingly small tail of the electronic wavefunction of the remote dots, and is only possible if mediated.
Waveguide-based spin-photon interfaces on the GaAs platform have emerged as a promising system for a variety of quantum information applications directly integrated into planar photonic circuits. The coherent control of spin states in a quantum dot c an be achieved by applying circularly polarized laser pulses that may be coupled into the planar waveguide vertically through radiation modes. However, proper control of the laser polarization is challenging since the polarization is modified through the transformation from the far field to the exact position of the quantum dot in the nanostructure. Here we demonstrate polarization-controlled excitation of a quantum-dot electron spin and use that to perform coherent control in a Ramsey interferometry experiment. The Ramsey interference reveals a pure dephasing time of $ 2.2pm0.1 $ ns, which is comparable to the values so far only obtained in bulk media. We analyze the experimental limitations in spin initialization fidelity and Ramsey contrast and identify the underlying mechanisms.
135 - R. Brunner , Y.-S. Shin , T. Obata 2011
A crucial requirement for quantum information processing is the realization of multiple-qubit quantum gates. Here, we demonstrate an electron spin based all-electrical two-qubit gate consisting of single spin rotations and inter-dot spin exchange in a double quantum dot. A partially entangled output state is obtained by the application of the two-qubit gate to an initial, uncorrelated state. We find that the degree of entanglement is controllable by the exchange operation time. The approach represents a key step towards the realization of universal multiple qubit gates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا