ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-shot readout of a driven hybrid qubit in a GaAs double quantum dot

126   0   0.0 ( 0 )
 نشر من قبل Wonjin Jang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a single-shot-based projective readout of a semiconductor hybrid qubit formed by three electrons in a GaAs double quantum dot. Voltage-controlled adiabatic transitions between the qubit operations and readout conditions allow high-fidelity mapping of quantum states. We show that a large ratio both in relaxation time vs. tunneling time (~ 50) and singlet-triplet splitting vs. thermal energy (~ 20) allow energy-selective tunneling-based spin-to-charge conversion with readout visibility ~ 92.6%. Combined with ac driving, we demonstrate high visibility coherent Rabi and Ramsey oscillations of a hybrid qubit in GaAs. Further, we discuss the generality of the method for use in other materials, including silicon.



قيم البحث

اقرأ أيضاً

The future development of quantum information using superconducting circuits requires Josephson qubits [1] with long coherence times combined to a high-fidelity readout. Major progress in the control of coherence has recently been achieved using circ uit quantum electrodynamics (cQED) architectures [2, 3], where the qubit is embedded in a coplanar waveguide resonator (CPWR) which both provides a well controlled electromagnetic environment and serves as qubit readout. In particular a new qubit design, the transmon, yields reproducibly long coherence times [4, 5]. However, a high-fidelity single-shot readout of the transmon, highly desirable for running simple quantum algorithms or measur- ing quantum correlations in multi-qubit experiments, is still lacking. In this work, we demonstrate a new transmon circuit where the CPWR is turned into a sample-and-hold detector, namely a Josephson Bifurcation Amplifer (JBA) [6, 7], which allows both fast measurement and single-shot discrimination of the qubit states. We report Rabi oscillations with a high visibility of 94% together with dephasing and relaxation times longer than 0:5 mus. By performing two subsequent measurements, we also demonstrate that this new readout does not induce extra qubit relaxation.
The future development of quantum information using superconducting circuits requires Josephson qubits with long coherence times combined to a high-delity readout. Major progress in the control of coherence has recently been achieved using circuit qu antum electrodynamics (cQED) architectures, where the qubit is embedded in a coplanar waveguide resonator (CPWR) which both provides a well controlled electromagnetic environment and serves as qubit readout. In particular a new qubit design, the transmon, yields reproducibly long coherence times. However, a high-delity single-shot readout of the transmon, highly desirable for running simple quantum algorithms or measuring quantum correlations in multi-qubit experiments, is still lacking. In this work, we demonstrate a new transmon circuit where the CPWR is turned into a sample-and-hold detector, namely a Josephson Bifurcation Amplifer (JBA), which allows both fast measurement and single-shot discrimination of the qubit states. We report Rabi oscillations with a high visibility of 94% together with dephasing and relaxation times longer than 0.5 $mu$s. By performing two subsequent measurements, we also demonstrate that this new readout does not induce extra qubit relaxation.
Quantum dot hybrid qubits formed from three electrons in double quantum dots represent a promising compromise between high speed and simple fabrication for solid state implementations of single qubit and two qubits quantum logic ports. We derive the Schrieffer-Wolff effective Hamiltonian that describes in a simple and intuitive way the qubit by combining a Hubbard-like model with a projector operator method. As a result, the Hubbard-like Hamiltonian is transformed in an equivalent expression in terms of the exchange coupling interactions between pairs of electrons. The effective Hamiltonian is exploited to derive the dynamical behaviour of the system and its eigenstates on the Bloch sphere to generate qubits operation for quantum logic ports. A realistic implementation in silicon and the coupling of the qubit with a detector are discussed.
124 - R. Brunner , Y.-S. Shin , T. Obata 2011
A crucial requirement for quantum information processing is the realization of multiple-qubit quantum gates. Here, we demonstrate an electron spin based all-electrical two-qubit gate consisting of single spin rotations and inter-dot spin exchange in a double quantum dot. A partially entangled output state is obtained by the application of the two-qubit gate to an initial, uncorrelated state. We find that the degree of entanglement is controllable by the exchange operation time. The approach represents a key step towards the realization of universal multiple qubit gates.
The negatively-charged silicon-vacancy (SiV$^-$) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable creation of indistinguishable emitter arrays and deterministi c coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date ($sim 250$ ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV$^-$ electronic spin coherence by five orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV$^-$ symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV$^-$ spin with 89% fidelity. Coherent control of the SiV$^-$ spin with microwave fields is used to demonstrate a spin coherence time $T_2$ of 13 ms and a spin relaxation time $T_1$ exceeding 1 s at 100 mK. These results establish the SiV$^-$ as a promising solid-state candidate for the realization of scalable quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا