ﻻ يوجد ملخص باللغة العربية
The spontaneous nucleation and dynamics of topological kink defects have been studied in trapped arrays of 41-43 Yb ions. The number of kinks formed as a function of quench rate across the linear-zigzag transition is measured in the under-damped regime of the inhomogeneous Kibble-Zurek theory. The experimental results agree well with molecular dynamics simulations, which show how losses mask the intrinsic nucleation rate. Simulations indicate that doubling the ion number and optimization of laser cooling can help reduce the effect of losses. A range of kink dynamics is observed including configural change, motion and lifetime, and behavioral sensitivity to ion number.
We investigate the energy dynamics of non-crystallized (melted) ions, confined in a Paul trap. The non-periodic Coulomb interaction experienced by melted ions forms a medium for non-conservative energy transfer from the radio-frequency (rf) field to
We demonstrate a double-trap system well suited to study cold collisions between trapped ions and trapped atoms. Using Yb$^+$ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several is
We demonstrate a Doppler cooling and detection scheme for ions with low-lying D levels which almost entirely suppresses scattered laser light background, while retaining a high fluorescence signal and efficient cooling. We cool a single ion with a la
Using a laser polarization gradient, we realize 3D Sisyphus cooling of $^{171}$Yb$^+$ ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a functi
Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection