ﻻ يوجد ملخص باللغة العربية
Using a laser polarization gradient, we realize 3D Sisyphus cooling of $^{171}$Yb$^+$ ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a function of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order-of-magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.
We implement three-dimensional polarization gradient cooling of trapped ions. Counter-propagating laser beams near $393,$nm impinge in lin$,perp,$lin configuration, at a frequency below the S$_{1/2}$ to P$_{3/2}$ resonance in $^{40}$Ca$^+$. We demons
We extend the theory for laser cooling in a near-resonant optical lattice to include multiple excited hyperfine states. Simulations are performed treating the external degrees of freedom of the atom, i.e., position and momentum, classically, while th
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore
We describe a simple approach to the problem of incorporating the response time of an atom or ion being Doppler-cooled into the theory of the cooling process. The system being cooled does not in general respond instantly to the changing laser frequen
We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the