ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Cold Collisions between Trapped Ions and Trapped Atoms

168   0   0.0 ( 0 )
 نشر من قبل Andrew Grier
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a double-trap system well suited to study cold collisions between trapped ions and trapped atoms. Using Yb$^+$ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several isotopes for collision energies down to 400 neV (5 mK). The measured rate coefficient of $6 times 10^{-10}$ cm$^{3}$s$^{-1}$, constant over four orders of magnitude in collision energy, is in good agreement with that derived from a semiclassical Langevin model for an atomic polarizability of 143 a.u.



قيم البحث

اقرأ أيضاً

We report on the observation of interactions between ultracold Rydberg atoms and ions in a Paul trap. The rate of observed inelastic collisions, which manifest themselves as charge transfer between the Rydberg atoms and ions, exceeds that of Langevin collisions for ground state atoms by about three orders of magnitude. This indicates a huge increase in interaction strength. We study the effect of the vacant Paul traps electric fields on the Rydberg excitation spectra. To quantitatively describe the exhibited shape of the ion loss spectra, we need to include the ion-induced Stark shift on the Rydberg atoms. Furthermore, we demonstrate Rydberg excitation on a dipole-forbidden transition with the aid of the electric field of a single trapped ion. Our results confirm that interactions between ultracold atoms and trapped ions can be controlled by laser coupling to Rydberg states. Adding dynamic Rydberg dressing may allow for the creation of spin-spin interactions between atoms and ions, and the elimination of collisional heating due to ionic micromotion in atom-ion mixtures.
Recent progresses on quantum control of cold atoms and trapped ions in both the scientific and technological aspects greatly advance the applications in precision measurement. Thanks to the exceptional controllability and versatility of these massive quantum systems, unprecedented sensitivity has been achieved in clocks, magnetometers and interferometers based on cold atoms and ions. Besides, these systems also feature many characteristics that can be employed to facilitate the applications in different scenarios. In this review, we briefly introduce the principles of optical clocks, cold atom magnetometers and atom interferometers used for precision measurement of time, magnetic field, and inertial forces. The main content is then devoted to summarize some recent experimental and theoretical progresses in these three applications, with special attention being paid to the new designs and possibilities towards better performance. The purpose of this review is by no means to give a complete overview of all important works in this fast developing field, but to draw a rough sketch about the frontiers and show the fascinating future lying ahead.
238 - J. Joger , H. Furst , N. Ewald 2017
We report on the observation of cold collisions between $^6$Li atoms and Yb$^+$ ions. This combination of species has recently been proposed as the most suitable for reaching the quantum limit in hybrid atom-ion systems, due to its large mass ratio. For atoms and ions prepared in the $^2S_{1/2}$ ground state, the charge transfer and association rate is found to be at least~10$^{3}$ times smaller than the Langevin collision rate. These results confirm the excellent prospects of $^6$Li--Yb$^+$ for sympathetic cooling and quantum information applications. For ions prepared in the excited electronic states $^2P_{1/2}$, $^2D_{3/2}$ and $^2F_{7/2}$, we find that the reaction rate is dominated by charge transfer and does not depend on the ionic isotope nor the collision energy in the range $sim$~1--120~mK. The low charge transfer rate for ground state collisions is corroborated by theory, but the $4f$ shell in the Yb$^+$ ion prevents an accurate prediction for the charge transfer rate of the $^2P_{1/2}$, $^2D_{3/2}$ and $^2F_{7/2}$ states. Using textit{ab initio} methods of quantum chemistry we calculate the atom-ion interaction potentials up to energies of 30$times 10^3$~cm$^{-1}$, and use these to give qualitative explanations of the observed rates.
We report the measurement of collision rate coefficient for collisions between ultracold Cs atoms and low energy Cs+ ions. The experiments are performed in a hybrid trap consisting of a magneto-optical trap (MOT) for Cs atoms and a Paul trap for Cs+ ions. The ion-atom collisions impart kinetic energy to the ultracold Cs atoms resulting in their escape from the shallow MOT and, therefore, in a reduction in the number of Cs atoms in the MOT. By monitoring, using fluorescence measurements, the Cs atom number and the MOT loading dynamics and then fitting the data to a rate equation model, the ion-atom collision rate is derived. The Cs-Cs+ collision rate coefficient $9.3(pm0.4)(pm1.2)(pm3.5) times 10^{-14}$ m$^{3}$s$^{-1}$, measured for an ion distribution with most probable collision energy of 95 meV ($approx k_{B}.1100$ K), is in fair agreement with theoretical calculations. As an intermediate step, we also determine the photoionization cross section of Cs $6P_{3/2}$ atoms at 473 nm wavelength to be $2.28 (pm 0.33) times 10^{-21}$ m$^{2}$.
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا