ﻻ يوجد ملخص باللغة العربية
Correlations in quantum systems exhibit a rich phenomenology under the effect of various sources of noise. We investigate theoretically and experimentally the dynamics of quantum correlations and their classical counterparts in two nuclear magnetic resonance setups, as measured by geometric quantifiers based on trace-norm. We consider two-qubit systems prepared in Bell diagonal states, and perform the experiments in decohering environments resulting from Bell diagonal-preserving Markovian local noise. We then report the first observation of environment-induced double sudden transitions in the geometric quantum correlations, a genuinely nonclassical effect not observable in classical correlations. The evolution of classical correlations in our physical implementation reveals in turn the finite-time relaxation to a pointer basis under nondissipative decoherence, which we characterize geometrically in full analogy with predictions based on entropic measures.
Non-classical correlations play a crucial role in the development of quantum information science. The recent discovery that non-classical correlations can be present even in separable (unentangled) states has broadened this scenario. This generalized
Dynamical quantum phase transitions (DQPTs) extend the concept of phase transitions and thus universality to the non-equilibrium regime. In this letter, we investigate DQPTs in a string of ions simulating interacting transverse-field Ising models. We
In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version o
We report on the existence of the phenomenon of sudden birth of maximal hidden quantum correlations in open quantum systems. Specifically, we consider the CHSH-inequality for Bell-nonlocality, the $rm F_3$-inequality for EPR-steering, and usefulness
We provide an historical perspective of how the notion of correlations has evolved within quantum physics. We begin by reviewing Shannons information theory and its first application in quantum physics, due to Everett, in explaining the information c