ﻻ يوجد ملخص باللغة العربية
We introduce an infinite family of quantifiers of quantum correlations beyond entanglement which vanish on both classical-quantum and quantum-classical states and are in one-to-one correspondence with the metric-adjusted skew informations. The `quantum $f-$correlations are defined as the maximum metric-adjusted $f-$correlations between pairs of local observables with the same fixed equispaced spectrum. We show that these quantifiers are entanglement monotones when restricted to pure states of qubit-qudit systems. We also evaluate the quantum $f-$correlations in closed form for two-qubit systems and discuss their behaviour under local commutativity preserving channels. We finally provide a physical interpretation for the quantifier corresponding to the average of the Wigner-Yanase-Dyson skew informations.
Dissimilar notions of quantum correlations have been established, each being motivated through particular applications in quantum information science and each competing for being recognized as the most relevant measure of quantumness. In this contrib
We construct an entanglement witness for many-qubit systems, based on symmetric two-body correlations with two measurement settings. This witness is able to detect the entanglement of some Dicke states for any number of particles, and such detection
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements.
Local unitary operations allow for a unifying approach to the quantification of quantum correlations among the constituents of a bipartite quantum system. For pure states, the distance between a given state and its image under least-perturbing local
We provide an historical perspective of how the notion of correlations has evolved within quantum physics. We begin by reviewing Shannons information theory and its first application in quantum physics, due to Everett, in explaining the information c