ﻻ يوجد ملخص باللغة العربية
I study the effectiveness of fault-tolerant quantum computation against correlated Hamiltonian noise, and derive a sufficient condition for scalability. Arbitrarily long quantum computations can be executed reliably provided that noise terms acting collectively on k system qubits are sufficiently weak, and decay sufficiently rapidly with increasing k and with increasing spatial separation of the qubits.
We propose a novel scheme of solid state realization of a quantum computer based on single spin enhancement mode quantum dots as building blocks. In the enhancement quantum dots, just one electron can be brought into initially empty dot, in contrast
We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanat
We show a significant reduction of the number of quantum operations and the improvement of the circuit depth for the realization of the Toffoli gate by using qudits. This is done by establishing a general relation between the dimensionality of qudits
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if
The successful implementation of algorithms on quantum processors relies on the accurate control of quantum bits (qubits) to perform logic gate operations. In this era of noisy intermediate-scale quantum (NISQ) computing, systematic miscalibrations,