ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Quantum Computing with Enhancement Quantum Dots

65   0   0.0 ( 0 )
 نشر من قبل Yuli Lyanda-Geller
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel scheme of solid state realization of a quantum computer based on single spin enhancement mode quantum dots as building blocks. In the enhancement quantum dots, just one electron can be brought into initially empty dot, in contrast to depletion mode dots based on expelling of electrons from multi-electron dots by gates. The quantum computer architectures based on depletion dots are confronted by several challenges making scalability difficult. These challenges can be successfully met by the approach based on ehnancement mode, capable of producing square array of dots with versatile functionalities. These functionalities allow transportation of qubits, including teleportation, and error correction based on straightforward one- and two-qubit operations. We describe physical properties and demonstrate experimental characteristics of enhancement quantum dots and single-electron transistors based on InAs/GaSb composite quantum wells. We discuss the materials aspects of quantum dot quantum computing, including the materials with large spin splitting such as InAs, as well as perspectives of enhancement mode approach in materials such as Si.



قيم البحث

اقرأ أيضاً

110 - John Preskill 2012
I study the effectiveness of fault-tolerant quantum computation against correlated Hamiltonian noise, and derive a sufficient condition for scalability. Arbitrarily long quantum computations can be executed reliably provided that noise terms acting c ollectively on k system qubits are sufficiently weak, and decay sufficiently rapidly with increasing k and with increasing spatial separation of the qubits.
Atomic ensembles, comprising clouds of atoms addressed by laser fields, provide an attractive system for both the storage of quantum information, and the coherent conversion of quantum information between atomic and optical degrees of freedom. In a l andmark paper, Duan et al. (DLCZ) [1] showed that atomic ensembles could be used as nodes of a quantum repeater network capable of sharing pairwise quantum entanglement between systems separated by arbitrarily large distances. In recent years, a number of promising experiments have demonstrated key aspects of this proposal [2-7]. Here, we describe a scheme for full scale quantum computing with atomic ensembles. Our scheme uses similar methods to those already demonstrated experimentally, and yet has information processing capabilities far beyond those of a quantum repeater.
We show a significant reduction of the number of quantum operations and the improvement of the circuit depth for the realization of the Toffoli gate by using qudits. This is done by establishing a general relation between the dimensionality of qudits and their topology of connections for a scalable multi-qudit processor, where higher qudit levels are used for substituting ancillas. The suggested model is of importance for the realization of quantum algorithms and as a method of quantum error correction codes for single-qubit operations.
We report on progress towards implementing mixed ion species quantum information processing for a scalable ion trap architecture. Mixed species chains may help solve several problems with scaling ion trap quantum computation to large numbers of qubit s. Initial temperature measurements of linear Coulomb crystals containing barium and ytterbium ions indicate that the mass difference does not significantly impede cooling at low ion numbers. Average motional occupation numbers are estimated to be $bar{n} approx 130$ quanta per mode for chains with small numbers of ions, which is within a factor of three of the Doppler limit for barium ions in our trap. We also discuss generation of ion-photon entanglement with barium ions with a fidelity of $F ge 0.84$, which is an initial step towards remote ion-ion coupling in a more scalable quantum information architecture. Further, we are working to implement these techniques in surface traps in order to exercise greater control over ion chain ordering and positioning.
Interesting problems in quantum computation take the form of finding low-energy states of (pseudo)spin systems with engineered Hamiltonians that encode the problem data. Motivated by the practical possibility of producing very low-temperature spin sy stems, we propose and exemplify the possibility to compute by coupling the computational spins to a non-Markovian bath of spins that serve as a heat sink. We demonstrate both analytically and numerically that this strategy can achieve quantum advantage in the Grover search problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا