ﻻ يوجد ملخص باللغة العربية
We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanathan and P. Horodecki, Phys. Rev. Lett. 112, 040404 (2014)] is not sufficient for revealing state-independent contextuality.
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if
We show that, regardless of the dimension of the Hilbert space, there exists no set of rays revealing state-independent contextuality with less than 13 rays. This implies that the set proposed by Yu and Oh in dimension three [Phys. Rev. Lett. 108, 03
Contextuality is a natural generalization of nonlocality which does not need composite systems or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum mechanics there exist scenarios where the contextual
Quantum state smoothing is a technique for estimating the quantum state of a partially observed quantum system at time $tau$, conditioned on an entire observed measurement record (both before and after $tau$). However, this smoothing technique requir
Quantum supermaps are a higher-order generalization of quantum maps, taking quantum maps to quantum maps. It is known that any completely positive, trace non-increasing (CPTNI) map can be performed as part of a quantum measurement. By providing an ex