ﻻ يوجد ملخص باللغة العربية
In order to prepare the ground for evaluating classes of three-loop sum-integrals that are presently needed for thermodynamic observables, we take a fresh and systematic look on the few known cases, and review their evaluation in a unified way using coherent notation. We do this for three important cases of massless bosonic three-loop vacuum sum-integrals that have been frequently used in the literature, and aim for a streamlined exposition as compared to the original evaluations. In passing, we speculate on options for generalization of the computational techniques that have been employed.
Three-loop vacuum integrals are an important building block for the calculation of a wide range of three-loop corrections. Until now, only results for integrals with one and two independent mass scales are known, but in the electroweak Standard Model
We evaluate a new 3-loop sum-integral which contributes to the Debye screening mass in hot QCD. While we manage to derive all divergences analytically, its finite part is mapped onto simple integrals and evaluated numerically.
Investigating the $Z_3$ symmetry in Quantum Chromodynamics (QCD) we show that full QCD with a vacuum of vanishing baryonic number does not lead to metastable phases. Rather in QCD with dynamical fermions, the degeneracy of $Z_3$ phases manifests itself in observables without open triality.
We compute all master integrals for massless three-loop four-particle scattering amplitudes required for processes like di-jet or di-photon production at the LHC. We present our result in terms of a Laurent expansion of the integrals in the dimension
We show how to evaluate tensor one-loop integrals in momentum space avoiding the usual plague of Gram determinants. We do this by constructing combinations of $n$- and $(n-1)$-point scalar integrals that are finite in the limit of vanishing Gram dete