ﻻ يوجد ملخص باللغة العربية
We show how to evaluate tensor one-loop integrals in momentum space avoiding the usual plague of Gram determinants. We do this by constructing combinations of $n$- and $(n-1)$-point scalar integrals that are finite in the limit of vanishing Gram determinant. These non-trivial combinations of dilogarithms, logarithms and constants are systematically obtained by either differentiating with respect to the external parameters - essentially yielding scalar integrals with Feynman parameters in the numerator - or by developing the scalar integral in $D=6-2e$ or higher dimensions. As an explicit example, we develop the tensor integrals and associated scalar integral combinations for processes where the internal particles are massless and where up to five (four massless and one massive) external particles are involved. For more general processes, we present the equations needed for deriving the relevant combinations of scalar integrals.
We briefly sketch the methods for a numerically stable evaluation of tensor one-loop integrals that have been used in the calculation of the complete electroweak one-loop corrections to $PepPemto4 $fermions. In particular, the improvement of the new
We present a new algorithm for the reduction of one-loop emph{tensor} Feynman integrals with $nleq 4$ external legs to emph{scalar} Feynman integrals $I_n^D$ with $n=3,4$ legs in $D$ dimensions, where $D=d+2l$ with integer $l geq 0$ and generic dimen
A comprehensive study is performed of general massive, tensor, two-loop Feynman diagrams with two and three external legs. Reduction to generalized scalar functions is discussed. Integral representations, supporting the same class of smoothness algor
We construct a specific formalism for calculating the one-loop virtual corrections for standard model processes with an arbitrary number of external legs. The procedure explicitly separates the infrared and ultraviolet divergences analytically from t
Three-loop vacuum integrals are an important building block for the calculation of a wide range of three-loop corrections. Until now, only results for integrals with one and two independent mass scales are known, but in the electroweak Standard Model