ﻻ يوجد ملخص باللغة العربية
We compute all master integrals for massless three-loop four-particle scattering amplitudes required for processes like di-jet or di-photon production at the LHC. We present our result in terms of a Laurent expansion of the integrals in the dimensional regulator up to 8$^{text{th}}$ power, with coefficients expressed in terms of harmonic polylogarithms. As a basis of master integrals we choose integrals with integrands that only have logarithmic poles - called $d$log forms. This choice greatly facilitates the subsequent computation via the method of differential equations. We detail how this basis is obtained via an improved algorithm originally developed by one of the authors. We provide a public implementation of this algorithm. We explain how the algorithm is naturally applied in the context of unitarity. In addition, we classify our $d$log forms according to their soft and collinear properties.
We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic resul
We evaluate analytically all previously unknown nonplanar master integrals for massless five-particle scattering at two loops, using the differential equations method. A canonical form of the differential equations is obtained by identifying integral
We evaluate a Laurent expansion in dimensional regularization parameter $epsilon=(4-d)/2$ of all the master integrals for four-loop massless propagators up to transcendentality weight twelve, using a recently developed method of one of the present co
We evaluate analytically higher terms of the epsilon-expansion of the three-loop master integrals corresponding to three-loop quark and gluon form factors and to the three-loop master integrals contributing to the electron g-2 in QED up to the transc
We calculate master integrals for bipartite cuts of the three-loop propagator QED diagrams. These master integrals determine the spectral density of the photon self energy. Our results are expressed in terms of the iterated integrals, which, apart fr