ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluidity of metastable bulk glass para-hydrogen at low temperature

116   0   0.0 ( 0 )
 نشر من قبل Jordi Boronat
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular para-hydrogen has been proposed theoretically as a possible candidate for superfluidity, but the eventual superfluid transition is hindered by its crystallization. In this work, we study a metastable non crystalline phase of bulk p-H2 by means of the Path Integral Monte Carlo method in order to investigate at which temperature this system can support superfluidity. By choosing accurately the initial configuration and using a non commensurate simulation box, we have been able to frustrate the formation of the crystal in the simulated system and to calculate the temperature dependence of the one-body density matrix and of the superfluid fraction. We observe a transition to a superfluid phase at temperatures around 1 K. The limit of zero temperature is also studied using the diffusion Monte Carlo method. Results for the energy, condensate fraction, and structure of the metastable liquid phase at T=0 are reported and compared with the ones obtained for the stable solid phase.



قيم البحث

اقرأ أيضاً

136 - C. Cazorla , J. Boronat 2008
We study molecular para-hydrogen (p-${rm H_{2}}$) and ortho-deuterium (o-${rm D_{2}}$) in two dimensions and in the limit of zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties of both systems like the total and kinetic energy per particle, radial pair distribution function, and Lindemanns ratio in the low pressure regime. By comparing the total energy per particle as a function of the density in liquid and solid p-${rm H_{2}}$, we show that molecular para-hydrogen, and also ortho-deuterium, remain solid at zero temperature. Interestingly, we assess the quality of three different symmetrized trial wave functions, based on the Nosanow-Jastrow model, in the p-${rm H_{2}}$ solid film at the variational level. In particular, we analyze a new type of symmetrized trial wave function which has been used very recently to describe solid $^{4}$He and found that also characterizes hydrogen satisfactorily. With this wave function, we show that the one-body density matrix $varrho_{1} (r)$ of solid p-${rm H_{2}}$ possesses off-diagonal long range order, with a condensate fraction that increases sizably in the negative pressure regime.
We report a quantitative experimental study of the crystallization kinetics of supercooled quantum liquid mixtures of para-hydrogen (pH$_2$) and ortho-deuterium (oD$_2$) by high spatial resolution Raman spectroscopy of liquid microjets. We show that in a wide range of compositions the crystallization rate of the isotopic mixtures is significantly reduced with respect to that of the pure substances. To clarify this behavior we have performed path-integral simulations of the non-equilibrium pH$_2$-oD$_2$ liquid mixtures, revealing that differences in quantum delocalization between the two isotopic species translate into different effective particle sizes. Our results provide first experimental evidence for crystallization slowdown of quantum origin, offering a benchmark for theoretical studies of quantum behavior in supercooled liquids.
Helium in nanoporous media has attracted much interest as a model Bose system with disorder and confinement. Here we have examined how a change in porous structure by preplating a monolayer of krypton affects the superfluid properties of $^4$He adsor bed or confined in a nanoporous Gelsil glass, which has a three-dimensional interconnected network of nanopores of 5.8 nm in diameter. Isotherms of adsorption and desorption of nitrogen show that monolayer preplating of Kr decreases the effective pore diameter to 4.7 nm and broadens the pore size distribution by about eight times from the sharp distribution of the bare Gelsil sample. The superfluid properties were studied by a torsional oscillator for adsorbed film states and pressurized liquid states, both before and after the monolayer Kr preplating. In the film states, both the superfluid transition temperature $T_{mathrm c}$ and the superfluid density decrease about 10 percent by Kr preplating. The suppression of film superfluidity is attributed to the quantum localization of $^4$He atoms by the randomness in the substrate potential, which is caused by the preplating--induced broadening of the pore size distribution. In the pressurized liquid states, the superfluid density $rho_{mathrm s}$ is found to increase by 10 percent by Kr preplating, whereas $T_{mathrm c}$ is decreased by 2 percent at all pressures. The unexpected enhancement of $rho_{mathrm s}$ might indicate the existence of an unknown disorder effect for confined $^4$He.
102 - Ranga Dias , Ori Noked , 2016
In the quest to make metallic hydrogen at low temperatures a rich number of new phases have been found and the highest pressure ones have somewhat flat phase lines, around room temperature. We have studied hydrogen to static pressures of GPa in a dia mond anvil cell and down to liquid helium temperatures, using infrared spectroscopy. We report a new phase at a pressure of GPa and T=5 K. Although we observe strong darkening of the sample in the visible, we have no evidence that this phase is metallic hydrogen.
Adsorption of para-Hydrogen on the outer surface of a single fullerene is studied theoretically, by means of ground state Quantum Monte Carlo simulations. We compute energetics and radial density profiles of para-Hydrogen for various coverages on a v ariety of small fullerenes. The equilibrium adsorbed monolayer is commensurate with the surface of the fullerene; as the chemical potential is increased, a discontinuous change is generally observed, to an incommensurate, compressible layer. Quantum exchanges of Hydrogen molecules are absent in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا