ﻻ يوجد ملخص باللغة العربية
We report a quantitative experimental study of the crystallization kinetics of supercooled quantum liquid mixtures of para-hydrogen (pH$_2$) and ortho-deuterium (oD$_2$) by high spatial resolution Raman spectroscopy of liquid microjets. We show that in a wide range of compositions the crystallization rate of the isotopic mixtures is significantly reduced with respect to that of the pure substances. To clarify this behavior we have performed path-integral simulations of the non-equilibrium pH$_2$-oD$_2$ liquid mixtures, revealing that differences in quantum delocalization between the two isotopic species translate into different effective particle sizes. Our results provide first experimental evidence for crystallization slowdown of quantum origin, offering a benchmark for theoretical studies of quantum behavior in supercooled liquids.
We study molecular para-hydrogen (p-${rm H_{2}}$) and ortho-deuterium (o-${rm D_{2}}$) in two dimensions and in the limit of zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties of both systems
Below the melting temperature $T_m$ crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below $T_m$, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a g
Recently the supercooled Wahnstrom binary Lennard-Jones mixture was partially crystallized into ${rm MgZn_2}$ phase crystals in lengthy Molecular Dynamics simulations. We present Molecular Dynamics simulations of a modified Kob-Andersen binary Lennar
Liquid atomic metallic hydrogen is the simplest, lightest, and most abundant of all liquid metals. The role of nucleon motions or ion dynamics has been somewhat ignored in relation to the dissociative insulator-metal transition. Almost all previous e
A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disc. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected i