ﻻ يوجد ملخص باللغة العربية
In this paper, we address the design of high spectral-efficiency Barnes-Wall (BW) lattice codes which are amenable to low-complexity decoding in additive white Gaussian noise (AWGN) channels. We propose a new method of constructing complex BW lattice codes from linear codes over polynomial rings, and show that the proposed construction provides an explicit method of bit-labeling complex BW lattice codes. To decode the code, we adapt the low-complexity sequential BW lattice decoder (SBWD) recently proposed by Micciancio and Nicolosi. First, we study the error performance of SBWD in decoding the infinite lattice, wherein we analyze the noise statistics in the algorithm, and propose a new upper bound on its error performance. We show that the SBWD is powerful in making correct decisions well beyond the packing radius. Subsequently, we use the SBWD to decode lattice codes through a novel noise-trimming technique. This is the first work that showcases the error performance of SBWD in decoding BW lattice codes of large block lengths.
In this paper we give the generalization of lifted codes over any finite chain ring. This has been done by using the construction of finite chain rings from $p$-adic fields. Further we propose a lattice construction from linear codes over finite chain rings using lifted codes.
SC-Flip (SCF) is a low-complexity polar code decoding algorithm with improved performance, and is an alternative to high-complexity (CRC)-aided SC-List (CA-SCL) decoding. However, the performance improvement of SCF is limited since it can correct up
New series of $2^{2m}$-dimensional universally strongly perfect lattices $Lambda_I $ and $Gamma_J $ are constructed with $$2BW_{2m} ^{#} subseteq Gamma _J subseteq BW_{2m} subseteq Lambda _I subseteq BW _{2m}^{#} .$$ The lattices are found by restric
In this paper, we propose a mechanism on the constructions of MDS codes with arbitrary dimensions of Euclidean hulls. Precisely, we construct (extended) generalized Reed-Solomon(GRS) codes with assigned dimensions of Euclidean hulls from self-orthogo
In this paper, a criterion of MDS Euclidean self-orthogonal codes is presented. New MDS Euclidean self-dual codes and self-orthogonal codes are constructed via this criterion. In particular, among our constructions, for large square $q$, about $frac{