ﻻ يوجد ملخص باللغة العربية
SC-Flip (SCF) is a low-complexity polar code decoding algorithm with improved performance, and is an alternative to high-complexity (CRC)-aided SC-List (CA-SCL) decoding. However, the performance improvement of SCF is limited since it can correct up to only one channel error ($omega=1$). Dynamic SCF (DSCF) algorithm tackles this problem by tackling multiple errors ($omega geq 1$), but it requires logarithmic and exponential computations, which make it infeasible for practical applications. In this work, we propose simplifications and approximations to make DSCF practically feasible. First, we reduce the transcendental computations of DSCF decoding to a constant approximation. Then, we show how to incorporate special node decoding techniques into DSCF algorithm, creating the Fast-DSCF decoding. Next, we reduce the search span within the special nodes to further reduce the computational complexity. Following, we describe a hardware architecture for the Fast-DSCF decoder, in which we introduce additional simplifications such as metric normalization and sorter length reduction. All the simplifications and approximations are shown to have minimal impact on the error-correction performance, and the reported Fast-DSCF decoder is the only SCF-based architecture that can correct multiple errors. The Fast-DSCF decoders synthesized using TSMC $65$nm CMOS technology can achieve a $1.25$, $1.06$ and $0.93$ Gbps throughput for $omega in {1,2,3}$, respectively. Compared to the state-of-the-art fast CA-SCL decoders with equivalent FER performance, the proposed decoders are up to $5.8times$ more area-efficient. Finally, observations at energy dissipation indicate that the Fast-DSCF is more energy-efficient than its CA-SCL-based counterparts.
Polar codes are a class of capacity achieving error correcting codes that has been recently selected for the next generation of wireless communication standards (5G). Polar code decoding algorithms have evolved in various directions, striking differe
In this paper, we address the design of high spectral-efficiency Barnes-Wall (BW) lattice codes which are amenable to low-complexity decoding in additive white Gaussian noise (AWGN) channels. We propose a new method of constructing complex BW lattice
In a recent work, Nazer and Gastpar proposed the Compute-and-Forward strategy as a physical-layer network coding scheme. They described a code structure based on nested lattices whose algebraic structure makes the scheme reliable and efficient. In th
Polar codes are a class of channel capacity achieving codes that has been selected for the next generation of wireless communication standards. Successive-cancellation (SC) is the first proposed decoding algorithm, suffering from mediocre error-corre
Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with a complexity that is close to that of successive cancel