ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a mechanism on the constructions of MDS codes with arbitrary dimensions of Euclidean hulls. Precisely, we construct (extended) generalized Reed-Solomon(GRS) codes with assigned dimensions of Euclidean hulls from self-orthogonal GRS codes. It turns out that our constructions are more general than previous works on Euclidean hulls of (extended) GRS codes.
In this paper, we construct several classes of maximum distance separable (MDS) codes via generalized Reed-Solomon (GRS) codes and extended GRS codes, where we can determine the dimensions of their Euclidean hulls or Hermitian hulls. It turns out tha
In this paper, a criterion of MDS Euclidean self-orthogonal codes is presented. New MDS Euclidean self-dual codes and self-orthogonal codes are constructed via this criterion. In particular, among our constructions, for large square $q$, about $frac{
The parameters of a $q$-ary MDS Euclidean self-dual codes are completely determined by its length and the construction of MDS Euclidean self-dual codes with new length has been widely investigated in recent years. In this paper, we give a further stu
Maximum distance separable (MDS) codes are optimal where the minimum distance cannot be improved for a given length and code size. Twisted Reed-Solomon codes over finite fields were introduced in 2017, which are generalization of Reed-Solomon codes.
Streaming codes represent a packet-level FEC scheme for achieving reliable, low-latency communication. In the literature on streaming codes, the commonly-assumed Gilbert-Elliott channel model, is replaced by a more tractable, delay-constrained, slidi