ﻻ يوجد ملخص باللغة العربية
We theoretically demonstrate the possibility to observe the macroscopic Zeno effect for nonlinear waveguides with a localized dissipation. We show the existence of stable stationary flows, which are balanced by the losses in the dissipative domain. The macroscopic Zeno effect manifests itself in the non-monotonic dependence of the stationary flow on the strength of the dissipation. In particular, we highlight the importance of the parameters of the dissipation to observe the phenomenon. Our results are applicable to a large variety of systems, including condensates of atoms or quasi-particles and optical waveguides.
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomi
We analyze the existence and stability of two kinds of self-trapped spatially localized gap modes, gap solitons and truncated nonlinear Bloch waves, in one-and two-dimensional optical or matter-wave media with self-focusing nonlinearity, supported by
We study the existence of one-dimensional localized states supported by linear periodic potentials and a domain-wall-like Kerr nonlinearity. The model gives rise to several new types of asymmetric localized states, including single- and double-hump s
The Brusselator reaction-diffusion model is a paradigm for the understanding of dissipative structures in systems out of equilibrium. In the first part of this paper, we investigate the formation of stationary localized structures in the Brusselator
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BECs) loaded into optical lattices, are often described by the nonlinear Schrodinger/Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model