ﻻ يوجد ملخص باللغة العربية
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number $n$, and the numbers of the density packets for each quantum state depend on both the principal quantum number $n$ and the secondary quantum number $l$. When the coupling is not zero,the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number $n$, only depend on the secondary quantum number $l$. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number $n$, while the stability of the rational solutions depends on the chemical potential and Raman detuning.
We analyze vector localized solutions of two-component Bose-Einstein condensates (BECs) with variable nonlinearity parameter and external trap potential through similarity transformation technique which transforms the two coupled Gross-Pitaevskii equ
We investigate the dynamics of the localized nonlinear matter wave in spin-1 Bose-Einstein condensates with trapping potentials and nonlinearities dependent on time and space. We solve the three coupled Gross-Pitaevskii equation by similarity transfo
Using similarity transformations we construct explicit nontrivial solutions of nonlinear Schrodinger equations with potentials and nonlinearities depending on time and on the spatial coordinates. We present the general theory and use it to calculate
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the g
We present the phase diagram, the underlying stability and magnetic properties as well as the dynamics of nonlinear solitary wave excitations arising in the distinct phases of a harmonically confined spinor $F=1$ Bose-Einstein condensate. Particularl