ﻻ يوجد ملخص باللغة العربية
We present the first detailed spatio-kinematical analysis of the planetary nebula HaTr 4, one of few known to contain a post-Common-Envelope central star system. Based on high spatial and spectral resolution spectroscopy of the [OIII]5004.84 angstrom nebular emission line, in combination with deep, narrow-band imagery, a spatio-kinematical model was developed in order to accurately determine the three-dimensional morphology and orientation of HaTr 4. The nebula is found to display an extended ovoid morphology with an equatorial enhancement consistent with a toroidal waist - a feature believed to be typical of central star binarity. The nebular inclination is found to be in good agreement with that determined for the binary plane, providing strong evidence that shaping and evolution of HaTr 4 has been influenced by its central binary system - making HaTr 4 one of only 5 planetary nebulae to have had this observationally proven.
We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula HaTr 4, one of few known to contain a post-common-envelope central star system. Common envelope evolution is believed to play an important role in the sha
There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape the nebula and even for a
Six planetary nebulae (PN) are known in the Kepler space telescope field of view, three newly identified. Of the 5 central stars of PN with useful Kepler data, one, J193110888+4324577, is a short-period, post common envelope binary exhibiting relativ
We find the central stars of the planetary nebulae (PNe) HaTr 7 and ESO 330-9 to be close binary systems. Both have orbital periods of less than half a day and contain an irradiated cool companion to the hot central star. We provide light curves, spe
We study the impact of binary interaction processes on the evolution of low- and intermediate-mass stars using long-term monitoring of their radial velocity. Here we report on our results on the central stars of two planetary nebulae (PNe): the wel