ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying close binary central stars of PN with Kepler

413   0   0.0 ( 0 )
 نشر من قبل Orsola De Marco
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Six planetary nebulae (PN) are known in the Kepler space telescope field of view, three newly identified. Of the 5 central stars of PN with useful Kepler data, one, J193110888+4324577, is a short-period, post common envelope binary exhibiting relativistic beaming effects. A second, the central star of the newly identified PN Pa5, has a rare O(He) spectral type and a periodic variability consistent with an evolved companion, where the orbital axis is almost aligned with the line of sight. The third PN, NGC~6826 has a fast rotating central star, something that can only be achieved in a merger. Fourth, the central star of the newly identified PN Kn61, has a PG1159 spectral type and a mysterious semi-periodic light variability which we conjecture to be related to the interplay of binarity with a stellar wind. Finally, the central star of the circular PN A61 does not appear to have a photometric variability above 2 mmag. With the possible exception of the variability of Kn61, all other variability behaviour, whether due to binarity or not, would not easily have been detected from the ground. We conclude, based on very low numbers, that there may be many more close binary or close binary products to be discovered with ultra-high precision photometry. With a larger number of high precision photometric observations we will be able to determine how much higher than the currently known 15 per cent, the short period binary fraction for central stars of PN is likely to be.



قيم البحث

اقرأ أيضاً

The Kepler Observatory offers unprecedented photometric precision (<1 mmag) and cadence for monitoring the central stars of planetary nebulae, allowing the detection of tiny periodic light curve variations, a possible signature of binarity. With this precision free from the observational gaps dictated by weather and lunar cycles, we are able to detect companions at much larger separations and with much smaller radii than ever before. We have been awarded observing time to obtain light-curves of the central stars of the six confirmed and possible planetary nebulae in the Kepler field, including the newly discovered object Kn 61, at cadences of both 30 min and 1 min. Of these six objects, we could confirm for three a periodic variability consistent with binarity. Two others are variables, but the initial data set presents only weak periodicities. For the central star of Kn 61, Kepler data will be available in the near future.
We present the identification of 34 likely binary central stars (CSs) of planetary nebulae (PNe) from {it Kepler/K2} data, seven of which show eclipses. Of these, 29 are new discoveries. Two additional CSs with more complicated variability are also p resented. We examined the light curves of all `possible, `likely and `true PNe in every {it Kepler/K2} campaign (0 through 19) to identify CS variability that may indicate a binary CS. For Campaigns 0, 2, 7, 15, and 16 we find 6 likely or confirmed variables among 21 PNe. Our primary effort, though, was focused on Campaign 11 which targeted a Galactic bulge field containing approximately 183 PNe, in which we identified 30 candidate variable CSs. The periods of these variables range from 2.3~h to 30~d, and based on our analysis, most are likely to be close binary star systems. We present periods and preliminary classifications (eclipsing, double degenerate, or irradiated systems) for the likely binaries based on light curve shape. From our total sample of 204 target PNe, with a correction for incompleteness due to magnitude limits, we calculate a binary fraction of PN central stars to be 20.7 percent for all the observed PNe, or 23.5 percent if we limit our sample only to `true PNe. However these fractions are almost certainly lower limits due to the large angular size of the emph{Kepler} pixels, which leads to reduced sensitivity in detecting variability, primarily as a result of dilution and noise from the nebula and neighbouring stars. We discuss the binary population of CSs based on these results as part of the total known sample of close binary CSs.
Recent work (Corradi et al. 2015, Jones et al. 2016) has shown that the phenomenon of extreme abundance discrepancies, where recombination line abundances exceed collisionally excited line abundances by factors of 10 or more, seem to be strongly asso ciated with planetary nebulae with close binary central stars. To further investigate, we have obtained spectra of a sample of nebulae with known close binary central stars, using FORS2 on the VLT, and we have discovered several new extreme abundance discrepancy objects. We did not find any non-extreme discrepancies, suggesting that a very high fraction of nebulae with close binary central stars also have an extreme abundance discrepancy.
We study the impact of binary interaction processes on the evolution of low- and intermediate-mass stars using long-term monitoring of their radial velocity. Here we report on our results on the central stars of two planetary nebulae (PNe): the wel l-studied spectrophotometric standard BD+33.2642 (central star of PNG 052.7+50.7) and HD112313 (central star of PN LoTr5), the optical light of which is dominated by a rapidly rotating G star. The high-resolution spectra were cross-correlated with carefully selected masks of spectral lines. The individual masks were optimised for the spectral signatures of the dominant contributor of the optical light. We report on the first detection of orbital motion in these two objects. For BD+33.2642 we sampled 1.5 cycles of the 1105 +/- 24 day orbital period. For HD 112313 a full period is not yet covered, despite our 1807 days of monitoring. The radial-velocity amplitude shows that it is unlikely that the orbital plane is co-planar with the one defined by the nebular waist of the bipolar nebula. To our knowledge these are the first detections of orbits in PNe that are in a range from several weeks to a few years. The orbital properties and chemical composition of BD+33.2642 are similar to what is found in post-AGB binaries with circumbinary discs. The latter are probably progenitors of these PNe. For LoTr5 the Ba-rich central star and the long orbital period are similar to the Ba star giants, which hence serve as natural progeny. In contrast to the central star in LoTr5, normal Ba stars are slow rotators. The orbits of these systems have a low probability of occurrence according to recent population synthesis calculations.
It is now clear that a binary formation pathway is responsible for a significant fraction of planetary nebulae, and this increased sample of known binaries means that we are now in a position to begin to constrain their influence on the formation and evolution of their host nebulae. Here, we will review current understanding of how binarity influences the resulting nebulae, based on observations and modelling of both the central binary systems and the planetary nebulae themselves. We will also highlight the most important test-cases which have proved the most interesting in studying the evolution of binaries into and through the planetary nebula phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا