ﻻ يوجد ملخص باللغة العربية
We find the central stars of the planetary nebulae (PNe) HaTr 7 and ESO 330-9 to be close binary systems. Both have orbital periods of less than half a day and contain an irradiated cool companion to the hot central star. We provide light curves, spectra, radial velocity curves, orbital periods, and binary modeling results for both systems. The binary modeling leads to system parameters, or ranges of allowed parameters for each system. We find that for the CS of HaTr 7 we need to use limb-darkening values for the cool companion that are different than the expected values for an isolated star. We also fit the central star spectrum to determine $log g$ and temperature values independent of the binary modeling. For ESO 330-9 we find that based on our binary modeling the hot central star is most likely a post-RGB star with a mass of around 0.4 M$_odot$. We discuss our derived stellar and nebular parameters in the broader context of close binary central stars and their surrounding PNe. We also discuss the present status of known or suspected post-RGB stars in PNe.
During the past 20 years, the idea that non-spherical planetary nebulae (PN) may need a binary or planetary interaction to be shaped was discussed by various authors. It is now generally agreed that the varied morphologies of PN cannot be fully expla
While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of thes
It is now clear that a binary formation pathway is responsible for a significant fraction of planetary nebulae, and this increased sample of known binaries means that we are now in a position to begin to constrain their influence on the formation and
Close binary central stars of planetary nebulae are key in constraining the poorly-understood common-envelope phase of evolution, which in turn is critical in understanding the formation of a wide-range of astrophysical phenomena (including cataclysm
The Kepler Observatory offers unprecedented photometric precision (<1 mmag) and cadence for monitoring the central stars of planetary nebulae, allowing the detection of tiny periodic light curve variations, a possible signature of binarity. With this