ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45

507   0   0.0 ( 0 )
 نشر من قبل Hong Ding
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The momentum distribution of the energy gap opening at the Fermi level of superconductors is a direct fingerprint of the pairing mechanism. While the phase diagram of the iron-based superconductors promotes antiferromagnetic fluctuations as a natural candidate for electron pairing, the precise origin of the interaction is highly debated. We used angle-resolved photoemission spectroscopy to reveal directly the momentum distribution of the superconducting gap in FeTe1-xSex, which has the simplest structure of all iron-based superconductors. We found isotropic superconducting gaps on all Fermi surfaces whose sizes can be fitted by a single gap function derived from a strong coupling approach, strongly suggesting local antiferromagnetic exchange interactions as the pairing origin.



قيم البحث

اقرأ أيضاً

In many unconventional superconductors, the pairing of electrons is driven by the repulsive interaction, which leads to the sign reversal of superconducting gaps along the Fermi surfaces (FS) or between them. However, to measure this sign change is n ot easy and straightforward. It is known that, in superconductors with sign reversal gaps, non-magnetic impurities can break Cooper pairs leading to the quasiparticle density of states in the superconducting state. The standing waves of these quasiparticles will interfere each other leading to the quasiparticle interference (QPI) pattern which carries the phase message reflecting also the superconducting gap structure. Based on the recently proposed defect-bound-state QPI technique, we explore the applicability of this technique to a typical iron based superconductor FeTe$_{0.55}$Se$_{0.45}$ with roughly equivalent gap values on the electron and hole pockets connected by the wave vector q_2=(0,pi). It is found that, on the negative energy side, with the energy slightly below the gap value, the phase reference quantity $|g(q,-E)|cos(theta_{q,+E}-theta_{q,-E}) becomes negative and the amplitude is strongly enhanced with the scattering vector q_2, but that corresponding to the scattering between the electron-electron pockets, namely q_3=(pi,pi), keeps all positive. This is well consistent with the theoretical expectation of the s^+- pairing gap and thus serves as a direct visualization of the sign reversal gaps. This experimental observation is also supported by the theoretical calculations with the Fermi surface structure and s^+- pairing gap.
The ferroelectric degenerate semiconductor Sn$_{1-delta}$Te exhibits superconductivity with critical temperatures, $T_c$, of up to 0.3 K for hole densities of order 10$^{21}$ cm$^{-3}$. When doped on the tin site with greater than $x_c$ $= 1.7(3)%$ i ndium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for $x > x_c$ than for $x < x_c$. By examining the effect of In dopant atoms on both $T_c$ and the temperature of the ferroelectric structural phase transition, $T_{SPT}$, we show that phonon modes related to this transition are not responsible for this $T_c$ enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.
We report superconducting (SC) properties of stoichiometric LiFeAs (Tc = 17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rock ing curves indicate better ordering than in chemically doped 122-compounds. The London penetration depth of 210 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters. Its temperature dependence is best described by a single isotropic SC gap of 3.0 meV, which agrees with the ARPES value of 3.1 meV and corresponds to the ratio 2Delta/kTc = 4.1, approaching the weak-coupling limit predicted by the BCS theory. This classifies LiFeAs as a weakly coupled single-gap superconductor, similar to conventional metals.
127 - H. Ding , P. Richard , K. Nakayama 2008
The recent discovery of superconductivity in iron-arsenic compounds below a transition temperature (Tc) as high as 55K ended the monopoly of copper oxides (cuprates) in the family of high-Tc superconductors. A critical issue in understanding this new superconductor, as in the case of cuprates, is the nature, in particular the symmetry and orbital dependence, of the superconducting gap. There are conflicting experimental results, mostly from indirect measurements of the low energy excitation gap, ranging from one gap to two gaps, from line nodes to nodeless gap function in momentum space. Here we report a direct observation of the superconducting gap, including its momentum, temperature, and Fermi surface (FS) dependence in Ba0.6K0.4Fe2As2 (Tc = 37 K) using angle-resolved photoelectron spectroscopy. We find two superconducting gaps with different values: a large gap (~ 12 meV) on the two small hole-like and electron-like FS sheets, and a small gap (~ 6 meV) on the large hole-like FS. Both gaps, closing simultaneously at the bulk Tc, are nodeless and nearly isotropic around their respective FS sheets. The isotropic pairing interactions are strongly orbital dependent, as the ratio 2Delta/kBTc switches from weak to strong coupling on different bands. The same and surprisingly large superconducting gap due to strong pairing on the two small FS, which are connected by the (pi, 0) spin-density-wave vector in the parent compound, strongly suggests that the pairing mechanism originates from the inter-band interactions between these two nested FS sheets.
Here we report the first results of the high-pressure Hall coefficient (RH) measurements, combined with the high-pressure resistance measurements, at different temperatures on the putative topological superconductor FeTe0.55Se0.45. We find the intima te correlation of sign change of RH, a fingerprint to manifest the reconstruction of Fermi surface, with structural phase transition and superconductivity. Below the critical pressure (PC) of 2.7 GPa, our data reveal that the hole - electron carriers are thermally balanced (RH=0) at a critical temperature (T*), where RH changes its sign from positive to negative, and concurrently a tetragonal-orthorhombic phase transition takes place. Within the pressure range from 1bar to PC, T* is continuously suppressed by pressure, while TC increases monotonically. At about PC, T* is indistinguishable and TC reaches a maximum value. Moreover, a pressure-induced sign change of RH is found at ~PC where the orthorhombic-monoclinic phase transition occurs. With further compression, TC decreases and disappears at ~ 12 GPa. The correlation among the electron-hole balance, crystal structure and superconductivity found in the pressurized FeTe0.55Se0.45 implies that its nontrivial superconductivity is closely associated with its exotic normal state resulted from the interplay between the reconstruction of the Fermi surface and the change of the structural lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا