ﻻ يوجد ملخص باللغة العربية
In many unconventional superconductors, the pairing of electrons is driven by the repulsive interaction, which leads to the sign reversal of superconducting gaps along the Fermi surfaces (FS) or between them. However, to measure this sign change is not easy and straightforward. It is known that, in superconductors with sign reversal gaps, non-magnetic impurities can break Cooper pairs leading to the quasiparticle density of states in the superconducting state. The standing waves of these quasiparticles will interfere each other leading to the quasiparticle interference (QPI) pattern which carries the phase message reflecting also the superconducting gap structure. Based on the recently proposed defect-bound-state QPI technique, we explore the applicability of this technique to a typical iron based superconductor FeTe$_{0.55}$Se$_{0.45}$ with roughly equivalent gap values on the electron and hole pockets connected by the wave vector q_2=(0,pi). It is found that, on the negative energy side, with the energy slightly below the gap value, the phase reference quantity $|g(q,-E)|cos(theta_{q,+E}-theta_{q,-E}) becomes negative and the amplitude is strongly enhanced with the scattering vector q_2, but that corresponding to the scattering between the electron-electron pockets, namely q_3=(pi,pi), keeps all positive. This is well consistent with the theoretical expectation of the s^+- pairing gap and thus serves as a direct visualization of the sign reversal gaps. This experimental observation is also supported by the theoretical calculations with the Fermi surface structure and s^+- pairing gap.
The momentum distribution of the energy gap opening at the Fermi level of superconductors is a direct fingerprint of the pairing mechanism. While the phase diagram of the iron-based superconductors promotes antiferromagnetic fluctuations as a natural
Local magneto-optical imaging and global magnetization measurement techniques were used in order to visualize shielding effects in the superconducting core of MgB_2 wires sheathed by ferromagnetic iron (Fe). The magnetic shielding can provide a Meiss
To gain insight into the unconventional superconductivity of Fe-pnictides with no electron pockets, we measure the thermal conductivity $kappa$ and penetration depth $lambda$ in the heavily hole-doped regime of Ba$_{1-x}$K$_x$Fe$_2$As$_2$. The residu
We have performed high-resolution angle-resolved photoemission spectroscopy on Fe-based superconductor LiFeAs (Tc = 18 K). We reveal multiple nodeless superconducting (SC) gaps with 2D/kBTc ratios varying from 2.8 to 6.4, depending on the Fermi surfa
We present a calculation of the Hall coefficient in 2H-TaSe2 and 2H-Cu0.2NbS2 relied on the photoemission data and compare the results to transport observations. The approach, based on the solution of the semiclassical Boltzmann equation in the isotr